AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 48, Issue 5, 2011, pp.991-1002
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2011.48.5.991

Title & Authors

AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES

Wang, Hong-Jun; Song, Yi-Sheng;

Wang, Hong-Jun; Song, Yi-Sheng;

Abstract

An iterative algorithm is provided to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. Using this result, we consider a strong convergence result for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping. Our results include the previous results as special cases and can be viewed as an improvement and refinement of the previously known results.

Keywords

metric projection;inverse-strongly monotone mapping;nonexpansive mapping;variational inequality;strong convergence;

Language

English

References

1.

Ya. I. Alber and A. N. Iusem, Extension of subgradient techniques for nonsmooth opti- mization in Banach spaces, Set-valued Anal. 9 (2001), no. 4, 315-335.

2.

Y. Alber, S. Reich, and J. C. Yao, Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces, Abstr. Appl. Anal. 2003 (2003), no. 4, 193-216.

3.

A. Bnouhachem, M. A. Noor, and Z. Hao, Some new extragradient iterative methods for variational inequalities, Nonlinear Anal. 70 (2009), no. 3, 1321-1329.

4.

F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276.

5.

F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785.

6.

F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301.

7.

F. E. Browder and W. E. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228.

8.

R. E. Bruck, On the weak convergence of an ergodic iteration for the solution of vari- ational inequalities for monotone operators in Hilbert space, J. Math. Anal. Appl. 61 (1977), no. 1, 159-164.

10.

Z. Huang and M. A. Noor, Some new unified iteration schemes with errors for nonex- pansive mappings and variational inequalities, Appl. Math. Comput. 194 (2007), no. 1, 135-142.

11.

H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), no. 3, 341-350.

12.

M. A. Noor, Some developments in general variational inequalities, Appl. Math. Com- put. 152 (2004), no. 1, 199-277.

13.

M. A. Noor, General variational inequalities and nonexpansive mappings, J. Math. Anal. Appl. 331 (2007), no. 2, 810-822.

14.

M. A. Noor and A. Bnouhachem, On an iterative algorithm for general variational inequalities, Appl. Math. Comput. 185 (2007), no. 1, 155-168.

15.

M. A. Noor and Z. Huang, Three-step methods for nonexpansive mappings and varia- tional inequalities, Appl. Math. Comput. 187 (2007), no. 2, 680-685.

16.

M. A. Noor and Z. Huang, Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings, Appl. Math. Comput. 191 (2007), no. 2, 504-510.

17.

X. Qin, S. Y. Cho, and S. M. Kang, Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications, J. Comput. Appl. Math. 233 (2009), no. 2, 231-240.

18.

X. Qin and M. A. Noor, General Wiener-Hopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces, Appl. Math. Comput. 201 (2008), no. 1-2, 716-722.

19.

S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal Appl. 75 (1980), no. 1, 287-292.

20.

S. Reich, Approximating zeros of accretive operators, Proc. Amer. Math. Soc. 51 (1975), no. 2, 381-384.

21.

B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683-2693.

22.

Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, Nonlinear Anal. 67 (2007), no. 2, 486-497.

23.

Y. Song and R. Chen, Strong convergence theorems on an iterative method for a family of finite non- expansive mappings, Appl. Math. Comput. 180 (2006), no. 1, 275-287.

24.

Y. Song and R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006), no. 1, 316-326.

25.

Y. Song and R. Chen, Iterative approximation to common fixed points of nonexpansive mapping se- quences in re exive Banach spaces, Nonlinear Anal. 66 (2007), no. 3, 591-603.

26.

Y. Song, R. Chen, and H. Zhou, Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces, Nonlinear Anal. 66 (2007), no. 5, 1016-1024.

27.

G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.

28.

T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one- parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239.

29.

W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28 (1976), no. 1, 168-181.