JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES
Wang, Hong-Jun; Song, Yi-Sheng;
  PDF(new window)
 Abstract
An iterative algorithm is provided to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. Using this result, we consider a strong convergence result for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping. Our results include the previous results as special cases and can be viewed as an improvement and refinement of the previously known results.
 Keywords
metric projection;inverse-strongly monotone mapping;nonexpansive mapping;variational inequality;strong convergence;
 Language
English
 Cited by
 References
1.
Ya. I. Alber and A. N. Iusem, Extension of subgradient techniques for nonsmooth opti- mization in Banach spaces, Set-valued Anal. 9 (2001), no. 4, 315-335. crossref(new window)

2.
Y. Alber, S. Reich, and J. C. Yao, Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces, Abstr. Appl. Anal. 2003 (2003), no. 4, 193-216. crossref(new window)

3.
A. Bnouhachem, M. A. Noor, and Z. Hao, Some new extragradient iterative methods for variational inequalities, Nonlinear Anal. 70 (2009), no. 3, 1321-1329. crossref(new window)

4.
F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert space, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276. crossref(new window)

5.
F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785. crossref(new window)

6.
F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. crossref(new window)

7.
F. E. Browder and W. E. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197-228. crossref(new window)

8.
R. E. Bruck, On the weak convergence of an ergodic iteration for the solution of vari- ational inequalities for monotone operators in Hilbert space, J. Math. Anal. Appl. 61 (1977), no. 1, 159-164. crossref(new window)

9.
B. Halpen, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957- 961. crossref(new window)

10.
Z. Huang and M. A. Noor, Some new unified iteration schemes with errors for nonex- pansive mappings and variational inequalities, Appl. Math. Comput. 194 (2007), no. 1, 135-142. crossref(new window)

11.
H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), no. 3, 341-350. crossref(new window)

12.
M. A. Noor, Some developments in general variational inequalities, Appl. Math. Com- put. 152 (2004), no. 1, 199-277. crossref(new window)

13.
M. A. Noor, General variational inequalities and nonexpansive mappings, J. Math. Anal. Appl. 331 (2007), no. 2, 810-822. crossref(new window)

14.
M. A. Noor and A. Bnouhachem, On an iterative algorithm for general variational inequalities, Appl. Math. Comput. 185 (2007), no. 1, 155-168. crossref(new window)

15.
M. A. Noor and Z. Huang, Three-step methods for nonexpansive mappings and varia- tional inequalities, Appl. Math. Comput. 187 (2007), no. 2, 680-685. crossref(new window)

16.
M. A. Noor and Z. Huang, Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings, Appl. Math. Comput. 191 (2007), no. 2, 504-510. crossref(new window)

17.
X. Qin, S. Y. Cho, and S. M. Kang, Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications, J. Comput. Appl. Math. 233 (2009), no. 2, 231-240. crossref(new window)

18.
X. Qin and M. A. Noor, General Wiener-Hopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces, Appl. Math. Comput. 201 (2008), no. 1-2, 716-722. crossref(new window)

19.
S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal Appl. 75 (1980), no. 1, 287-292. crossref(new window)

20.
S. Reich, Approximating zeros of accretive operators, Proc. Amer. Math. Soc. 51 (1975), no. 2, 381-384. crossref(new window)

21.
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), no. 4, 2683-2693. crossref(new window)

22.
Y. Song and R. Chen, Convergence theorems of iterative algorithms for continuous pseudocontractive mappings, Nonlinear Anal. 67 (2007), no. 2, 486-497. crossref(new window)

23.
Y. Song and R. Chen, Strong convergence theorems on an iterative method for a family of finite non- expansive mappings, Appl. Math. Comput. 180 (2006), no. 1, 275-287. crossref(new window)

24.
Y. Song and R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006), no. 1, 316-326. crossref(new window)

25.
Y. Song and R. Chen, Iterative approximation to common fixed points of nonexpansive mapping se- quences in re exive Banach spaces, Nonlinear Anal. 66 (2007), no. 3, 591-603. crossref(new window)

26.
Y. Song, R. Chen, and H. Zhou, Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces, Nonlinear Anal. 66 (2007), no. 5, 1016-1024. crossref(new window)

27.
G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.

28.
T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one- parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), no. 1, 227-239. crossref(new window)

29.
W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J. Math. Soc. Japan 28 (1976), no. 1, 168-181. crossref(new window)

30.
W. Takahashi,, Nonlinear complementarity problem and systems of convex inequalities, J. Op- tim. Theory Appl. 24 (1978), no. 3, 499-506. crossref(new window)

31.
W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. crossref(new window)