JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE LOCAL COHOMOLOGY OF MINIMAX MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE LOCAL COHOMOLOGY OF MINIMAX MODULES
Mafi, Amir;
  PDF(new window)
 Abstract
Let R be a commutative Noetherian ring, a an ideal of R, and M a minimax R-module. We prove that the local cohomology modules are a-cominimax; that is, (R/a, ) is minimax for all i and j in the following cases: (a) dim R/a = 1; (b) cd(a) = 1, where cd is the cohomological dimension of a in R; (c) dim . In these cases we also prove that the Bass numbers and the Betti numbers of are finite.
 Keywords
local cohomology modules;minimax modules;
 Language
English
 Cited by
1.
On the generalized local cohomology of minimax modules, Journal of Algebra and Its Applications, 2016, 15, 08, 1650147  crossref(new windwow)
2.
Extension functors of cominimax modules, Communications in Algebra, 2017, 45, 2, 621  crossref(new windwow)
 References
1.
J. Azami, R. Naghipour, and B. Vakili, Finiteness properties of local cohomology modules for $\alpha$-minimax modules, Proc. Amer. Math. Soc. 137 (2009), no. 2, 439-448.

2.
K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2359-2363. crossref(new window)

3.
K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (2009), no. 7, 1997-2011. crossref(new window)

4.
R. Belshoff, S. P. Slattery, and C. Wickham, The local cohomology modules of Matlis reflexive modules are almost cofinite, Proc. Amer. Math. Soc. 124 (1996), no. 9, 2649-2654. crossref(new window)

5.
R. Belshoff, S. P. Slattery, and C. Wickham, Finiteness properties for Matlis reflexive modules, Comm. Algebra 24 (1996), no. 4, 1371-1376. crossref(new window)

6.
M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60. Cambridge University Press, Cambridge, 1998.

7.
D. Delfino and T. Marley, Cofinite modules and local cohomology, J. Pure Appl. Algebra 121 (1997), no. 1, 45-52. crossref(new window)

8.
E. Enochs, Flat covers and at cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), no. 2, 179-184. crossref(new window)

9.
A. Grothendieck, Local Cohomology, Notes by R. Harthsorne, Lecture Notes in Math. 862, Springer-Verlag, 1966.

10.
R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164. crossref(new window)

11.
K. I. Kawasaki, Cofiniteness of local cohomology modules for principal ideals, Bull. London Math. Soc. 30 (1998), no. 3, 241-246. crossref(new window)

12.
K. Khashyarmanesh and F. Khosh-Ahang, On the local cohomology of Matlis reflexive modules, Comm. Algebra 36 (2008), no. 2, 665-669. crossref(new window)

13.
L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005), no. 2, 649-668. crossref(new window)

14.
K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179-191.

15.
T. Zink, Endlichkeritsbedingungen fur moduln uber einem Noetherschen ring, Math. Nachr. 64 (1974), 239-252. crossref(new window)

16.
H. Zoschinger, Minimax modules, J. Algebra 102 (1986), no. 1, 1-32. crossref(new window)

17.
H. Zoschinger, Uber die Maximalbedingung fur radikalvolle Untermoduh, Hokkaido Math. J. 17 (1988), no. 1, 101-116. crossref(new window)