JOURNAL BROWSE
Search
Advanced SearchSearch Tips
APPROXIMATION AND BALANCING ORDERS FOR TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
APPROXIMATION AND BALANCING ORDERS FOR TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS
Choi, Young-Woo; Jung, Jae-Won;
  PDF(new window)
 Abstract
We consider totally interpolating biorthogonal multiwavelet systems with finite impulse response two-band multifilter banks, a study balancing order conditions of such systems. Based on FIR and interpolating properties, we show that approximation order condition is completely equivalent to balancing order condition. Consequently, a prefiltering can be avoided if a totally interpolating biorthogonal multiwavelet system satisfies suitable approximation order conditions. An example with approximation order 4 is provided to illustrate the result.
 Keywords
multiwavelets;interpolating;balancing order;
 Language
English
 Cited by
1.
INFINITUDE OF MINIMALLY SUPPORTED TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS WITH LOW APPROXIMATION ORDERS,;;

Korean Journal of Mathematics, 2013. vol.21. 3, pp.247-263 crossref(new window)
1.
INFINITUDE OF MINIMALLY SUPPORTED TOTALLY INTERPOLATING BIORTHOGONAL MULTIWAVELET SYSTEMS WITH LOW APPROXIMATION ORDERS, Korean Journal of Mathematics, 2013, 21, 3, 247  crossref(new windwow)
 References
1.
S. Bacchelli, M. Cotronei, and D. Lazzaro, An algebraic construction of k-balanced multiwavelets via the lifting scheme, Numer. Algorithms 23 (2000), no. 4, 329-356. crossref(new window)

2.
Y. Choi and J. Jung, Totally interpolating biorthogonal multiwavelet systems with approximation order, Preprint.

3.
I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

4.
G. Donovan, J. S. Geronimo, D. P. Hardin, and P. R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Anal. 27 (1996), no. 4, 1158-1192. crossref(new window)

5.
G. B. Folland, Fourier Analysis and Its Applications, Brooks/Cole Publishing Company, A Division of Wadsworth, Inc. 1992.

6.
D. P. Hardin and J. A. Marasovich, Biorthogonal Multiwavelets on [-1, 1], Appl. Comput. Harmon. Anal. 7 (1999), no. 1, 34-53. crossref(new window)

7.
S. Hongli, C. Yuanli, and Q. Zulian, On Design of Multiwavelet Prefilters, Appl. Math. Comput. 172 (2006), no. 2, 1175-1187. crossref(new window)

8.
Q. Jiang, On the Regularity of Matrix Refinable Functions, SIAM J. Math. Anal. 29 (1998), no. 5, 1157-1176. crossref(new window)

9.
K. Koch, Interpolating scaling vectors, Int. J. Wavelets Multiresolut. Inf. Process. 3 (2005), no. 3, 389-416. crossref(new window)

10.
K. Koch, Multivariate orthogonal interpolating scaling vectors, Appl. Comput. Harmon. Anal. 22 (2007), no. 2, 198-216. crossref(new window)

11.
J. Lebrun and M. Vetterli, Balanced multiwavelets theory and design, IEEE Trans. Signal Process. 46 (1998), no. 4, 1119-1125. crossref(new window)

12.
J. Lebrun and M. Vetterli, High order balanced multiwavelets: theory, factorization, and design, IEEE Trans. Signal Process. 49 (2001), no. 9, 1918-1930. crossref(new window)

13.
P. R. Massopust, D. K. Rush, and P. J. Fleet, On the support properties of scaling vectors, Appl. Comput. Harmon. Anal. 3 (1996), no. 3, 229-238. crossref(new window)

14.
G. Plonka and V. Strela, From wavelets to multiwavelets, Mathematical Methods for Curves and Surface II(M. Dahlen, T. Lyche, and L. L. Schumaker, Eds. Vanderbilt Univ. Press, Nashville), (1998), 375-399.

15.
I. W. Selesnick, Interpolating multiwavelet bases and the sampling theorem, IEEE Trans. Signal Process. 47 (1999), no. 6, 1615-1621. crossref(new window)

16.
G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, MA, 1995.

17.
W. Sweldens and R. Piessens, Wavelet sampling techniques, Proc. Statistical Computing Section, 20-29, 1993.

18.
X. G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter, Design of prefilters for discrete multiwavelet transforms, IEEE Trans. Signal Process. 44 (1996), 25-35. crossref(new window)

19.
X. G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter, Why and how prefiltering for discrete multiwavelet transforms, Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Proces. Vol. 1, 1578-1581, 1996.

20.
S. Yang and H. Wang, High-order balanced multiwavelets with dilation factor a, Appl. Math. Comput. 181 (2006), no. 1, 362-369. crossref(new window)

21.
J. K. Zhang, T. N. Davidson, Z. Q. Luo, and K. M. Wong, Design of interpolating biorthogonal multiwavelet systems with compact support, Appl. Comput. Harmon. Anal. 11 (2001), no. 3, 420-438. crossref(new window)