JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DECOMPOSITION THEOREMS OF LIE OPERATOR ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DECOMPOSITION THEOREMS OF LIE OPERATOR ALGEBRAS
Chen, Yin; Chen, Liangyun;
  PDF(new window)
 Abstract
In this paper, we introduce a notion of Lie operator algebras which as a generalization of ordinary Lie algebras is an analogy of operator groups. We discuss some elementary properties of Lie operator algebras. Moreover, we also prove a decomposition theorem for Lie operator algebras.
 Keywords
Lie operator algebras;Lie algebras;decomposition theorem;
 Language
English
 Cited by
 References
1.
C. W. Ayoub, Sylow theory for a certain class of operator groups, Canad. J. Math. 13 (1961), 192-200. crossref(new window)

2.
R. Baer, Direct decompositions, Trans. Amer. Math. Soc. 62 (1947), 62-98. crossref(new window)

3.
R. Baer, Automorphism rings of primary Abelian operator groups, Ann. of Math. (2) 44 (1943), 192-227. crossref(new window)

4.
G. Glauberman, Fixed points in groups with operator groups, Math. Z. 84 (1964), 120-125. crossref(new window)

5.
F. Gross, A note on fixed-point-free solvable operator groups, Proc. Amer. Math. Soc. 19 (1968), 1363-1365. crossref(new window)

6.
N. Jacobson, Basic Algebra II, W. H. Freeman and Company, San Francisco, 1980.

7.
C. Jiang, D. Meng, and S. Q. Zhang, Some complete Lie algebras, J. Algebra 186 (1996), no. 3, 807-817. crossref(new window)

8.
D. Meng and S. Wang, On the construction of complete Lie algebras, J. Algebra 176 (1995), no. 2, 621-637. crossref(new window)

9.
D. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.

10.
S. Suanmali, On the relationship between the class of a Lie algebra and the classes of its subalgebras, Internat. J. Algebra Comput. 18 (2008), no. 1, 83-95. crossref(new window)

11.
Y. Wang, Finite groups admitting a p-solvable operator group, J. Algebra 204 (1998), no. 1, 478-490.

12.
T. Wolf, Character correspondences induced by subgroups of operator groups, J. Algebra 57 (1979), no. 2, 502-521. crossref(new window)