JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A DETERMINANT FORMULA FOR CONGRUENT ZETA FUNCTIONS OF REAL ABELIAN FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A DETERMINANT FORMULA FOR CONGRUENT ZETA FUNCTIONS OF REAL ABELIAN FUNCTION FIELDS
Ahn, Jae-Hyun; Jung, Hwan-Yup;
  PDF(new window)
 Abstract
In this paper we give a determinant formula for congruent zeta functions of real Abelian function fields. We also give some example of congruent zeta functions when the conductor of real Abelian function field is monic irreducible.
 Keywords
congruent zeta function;Abelian function field;
 Language
English
 Cited by
 References
1.
J. Ahn, S. Choi, and H. Jung, Class number formulae in the form of a product of determinants in function fields, J. Aust. Math. Soc. 78 (2005), no. 2, 227-238. crossref(new window)

2.
S. Bae, H. Jung, and J. Ahn, Class numbers of some abelian extensions of rational function fields, Math. Comp. 73 (2004), no. 245, 377-386.

3.
S. Bae and P.-L. Kang, Class numbers of cyclotomic function fields, Acta Arith. 102 (2002), no. 3, 251-259. crossref(new window)

4.
M. Rosen, A note on the relative class number in function fields, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1299-1303. crossref(new window)

5.
D. Shiomi, A determinant formula for congruence zeta functions of maximal real cyclotomic function fields, Acta Arith. 138 (2009), no. 3, 259-268. crossref(new window)