JOURNAL BROWSE
Search
Advanced SearchSearch Tips
VALUE SHARING RESULTS OF A MEROMORPHIC FUNCTION f(z) AND f(qz)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
VALUE SHARING RESULTS OF A MEROMORPHIC FUNCTION f(z) AND f(qz)
Qi, Xiaoguang; Liu, Kai; Yang, Lianzhong;
  PDF(new window)
 Abstract
In this paper, we investigate sharing value problems related to a meromorphic function f(z) and f(qz), where q is a non-zero constant. It is shown, for instance, that if f(z) is zero-order and shares two valves CM and one value IM with f(qz), then f(z)
 Keywords
meromorphic functions;uniqueness;q-difference;sharing value;
 Language
English
 Cited by
1.
SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS,;;

대한수학회보, 2013. vol.50. 3, pp.731-745 crossref(new window)
2.
VALUE DISTRIBUTION AND UNIQUENESS ON q-DIFFERENCES OF MEROMORPHIC FUNCTIONS,;

대한수학회보, 2013. vol.50. 4, pp.1157-1171 crossref(new window)
1.
VALUE DISTRIBUTION AND UNIQUENESS ON q-DIFFERENCES OF MEROMORPHIC FUNCTIONS, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1157  crossref(new windwow)
2.
SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 731  crossref(new windwow)
3.
Difference analogues of the second main theorem of zero-order meromorphic mappings for slowly moving targets, Asian-European Journal of Mathematics, 2017, 1850053  crossref(new windwow)
 References
1.
D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 457-474. crossref(new window)

2.
A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Transl. Math. Monogr., vol. 236, American Mathematical Society, Providence, RI, 2008, translated from the 1970 Russian original by Mikhail Ostrovskii, with an appendix by Alexandre Eremenko and James K. Langley.

3.
G. G. Gundersen, Meromorphic functions that share three or four values, J. London Math. Soc. (2) 20 (1979), no. 3, 457-466. crossref(new window)

4.
G. G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math. Soc. 277 (1983), no. 2, 545-567. crossref(new window)

5.
W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

6.
J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. L. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. crossref(new window)

7.
I. Laine and C. C. Yang, Clunie theorem for difference and q-difference polynomials, J. London. Math. Soc. (2) 76 (2007), no. 3, 556-566. crossref(new window)

8.
P. Li and C. C. Yang, When an entire function and its linear differential polynomial share two values, Illinois J. Math. 44 (2000), no. 2, 349-362.

9.
R. Nevanlinna, Le theoreme de Picard-Borel et la theorie des fonctions meromorphes, Gauthiers-Villars, Paris, 1929.

10.
C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, 2003.

11.
J. L. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. crossref(new window)