JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE STRUCTURE OF THE REGULAR LEVEL SETS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE STRUCTURE OF THE REGULAR LEVEL SETS
Hwang, Seung-Su;
  PDF(new window)
 Abstract
Consider the -adjoint of the linearization of the scalar curvature . If ker on an n-dimensional compact manifold, it is well known that the scalar curvature is a non-negative constant. In this paper, we study the structure of the level set (0) and find the behavior of Ricci tensor when ker with > 0. Also for a nontrivial solution (g, f) of $z
 Keywords
scalar curvature;the regular level set;the traceless Ricci tensor;
 Language
English
 Cited by
 References
1.
S. Agmon, The $L_p$ approach to the Dirichlet Problem, Ann. Scuola Norm. Sup. Pisa 13 (1959), 405-448.

2.
M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969), 379-392. crossref(new window)

3.
A. L. Besse, Einstein Manifolds, Springer-Verlag, New York, 1987.

4.
L. Bessieres, J. Lafontiane, and L. Rozoy, Scalar curvature and black holes, preprint.

5.
J. P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.

6.
A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. crossref(new window)

7.
J. Hempel, 3-manifolds, Princeton, 1976.

8.
S. Hwang, Critical points of the total scalar curvature functional on the space of metrics of constant scalar curvature, Manuscripta Math. 103 (2000), no. 2, 135-142. crossref(new window)

9.
S. Hwang, J. Chang, and G. Yun, Rigidity of the critical point equation, Math. Nachr. 283 (2010), no. 6, 846-853. crossref(new window)

10.
O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665-675. crossref(new window)

11.
J. Lafontaine, Sur la geometrie d'une generalisation de l'equation differentielle d'Obata, J. Math. Pures Appl. (9) 62 (1983), no. 1, 63-72.

12.
J. Lafontaine and L. Rozoy, Courure scalaire et trous noirs, Seminaire de Theorie Spectrale et Geometrie, Vol. 18, Annee 1999-2000, 69-76, Semin. Theor. Spectr. Geom., 18, Univ. Grenoble I, Saint-Martin-d'Heres, 2000.

13.
Y. Shen, A note on Fisher-Marsden's conjecture, Proc. Amer. Math. Soc. 125 (1997), no. 3, 901-905. crossref(new window)