JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONTINUITY OF SPECTRA AND COMPACT PERTURBATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONTINUITY OF SPECTRA AND COMPACT PERTURBATIONS
Sanchez-Perales, Salvador; Djordjevic, Slavissa V.;
  PDF(new window)
 Abstract
In this note we give conditions for continuity of spectrum, approximative point spectrum and defect spectrum on the set , where and is the set of compact operators.
 Keywords
The continuity of the spectrum;
 Language
English
 Cited by
1.
Continuity and Invariance of the Sacker–Sell Spectrum, Journal of Dynamics and Differential Equations, 2016, 28, 2, 533  crossref(new windwow)
2.
Spectral continuity using ν -convergence, Journal of Mathematical Analysis and Applications, 2016, 433, 1, 405  crossref(new windwow)
3.
The perturbation classes problem for generalized Drazin invertible operators I, Rendiconti del Circolo Matematico di Palermo (1952 -), 2017  crossref(new windwow)
 References
1.
P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.

2.
C. Apostol and B. Morrel, On uniform approximation of operators by simple models, Indiana Univ. Math. J. 26 (1977), no. 3, 427-442. crossref(new window)

3.
C. Apostol, L. A. Fialkow, D. A. Herrero, and D. Voiculescu, Approximation of Hilbert Space Operators. Vol. II, Res. Notes Math. 102, Pitman, Boston, 1984.

4.
J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator Theory 2 (1979), no. 2, 174-198. crossref(new window)

5.
J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity. II, Integral Equations Operator Theory 4 (1981), no. 4, 459-503. crossref(new window)

6.
S. V. Djordjevic and Y. M. Han, Browder's theorems and spectral continuity, Glasg. Math. J. 42 (2000), no. 3, 479-486. crossref(new window)

7.
B. P. Duggal, SVEP, Browder and Weyl theorems, Topicos de Teoria de la Aproximacion III, Editores: M.A. Jimenez P., J. Bustamante G. y S.V. Djordjevic, Textos Cientificos, BUAP, Puebla (2009), 107-146.

8.
J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176. crossref(new window)

9.
C. L. Olsen and J. K. Plastiras, Quasialgebraic operators, compact perturbations, and the essential norm, Michigan Math. J. 21 (1974), 385-397.