JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH HARMONIC POTENTIAL IN Hs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH HARMONIC POTENTIAL IN Hs
Zhang, Shan; Liu, Zuhan; Lu, Zhongxue;
  PDF(new window)
 Abstract
We establish the local well-posedness for the Cauchy problem of the nonlinear Schrodinger equation with harmonic potential in , where , s > 0.
 Keywords
nonlinear Schrodinger equation;harmonic potential;Cauchy problem; space;
 Language
English
 Cited by
 References
1.
J. Bergh and J. Lofstom, Interpolation Spaces, Springer, New York, 1976.

2.
R. Carles, Semi-classical Schrodinger equations with harmonic potential and nonlinear perturbation, Ann. Inst. H. Poincare Anal. Non Lineaire 20 (2003), no. 3, 501-542. crossref(new window)

3.
R. Carles, Semi-classical Schrodinger equations with harmonic potential and nonlinear perturbation, Anim. Ecol. 44 (1975), 283-295. crossref(new window)

4.
R. Carles, Remarks on nonlinear Schrodinger equations with harmonic potential, Ann. Henri Poincare 3 (2002), no. 4, 757-772. crossref(new window)

5.
T. Cazenave, Semilinear Schrodinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

6.
T. Cazenave and A. Maraux, An Introduction to Semilinear Evolution Equation, Clarendon Press. Oxford, 1998.

7.
T. Cazenave and F. B. Weissler, The Cauchy Problem for the Critical Nonlinear Schrodinger Equations in $H^s$, Nonlinear Anal. 14 (1990), no. 10, 807-836. crossref(new window)

8.
Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrodinger equations with potentials, J. Differential Equations 81 (1989), no. 2, 255-274. crossref(new window)

9.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.