JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MEROMORPHIC SOLUTIONS OF SOME q-DIFFERENCE EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MEROMORPHIC SOLUTIONS OF SOME q-DIFFERENCE EQUATIONS
Chen, Baoqin; Chen, Zongxuan;
  PDF(new window)
 Abstract
We consider meromorphic solutions of q-difference equations of the form where , , are meromorphic functions, ≢ 0 and such that 0 < |q| 1. We give a new estimate on the upper bound for the length of the gap in the power series of entire solutions for the case 0 < |q| < 1 and n = 2. Some growth estimates for meromorphic solutions are also given in the cases 0 < |q| < 1. Moreover, we investigate zeros and poles of meromorphic solutions for the case |q| = 1.
 Keywords
q-difference equation;growth;type;
 Language
English
 Cited by
1.
FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS,;

대한수학회보, 2014. vol.51. 1, pp.83-98 crossref(new window)
1.
FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS, Bulletin of the Korean Mathematical Society, 2014, 51, 1, 83  crossref(new windwow)
 References
1.
M. Ablowitz, R. G. Halburd, and B. Herbst, On the extension of the Painleve property to difference equations, Nonlinearity 13 (2000), no. 3, 889-905. crossref(new window)

2.
W. Bergweiler, K. Ishizaki, and N. Yanagihara, Meromorphic solutions of some functional equations, Methods Appl. Anal. 5 (1998), no. 3, 248-258.

3.
W. Bergweiler, K. Ishizaki, and N. Yanagihara, Growth of meromorphic solutions of some functional equations I, Aequationes Math. 63 (2002), no. 1-2, 140-151. crossref(new window)

4.
W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133-147. crossref(new window)

5.
B. Q. Chen, Z. X. Chen, and S. Li, Properties on solutions of some q-difference equations, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 10, 1877-1886. crossref(new window)

6.
Z. X. Chen and K. H. Shon, On zeros and fixed points of differences of meromorphic functions, J. Math. Anal. Appl. 344 (2008), no. 1, 373-383. crossref(new window)

7.
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f($z+\eta$) and difference equations in thecomplex plane, Ramanujan J. 16 (2008), no. 1, 105-129. crossref(new window)

8.
G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo, and D. G. Yang, Meromorphic solutions of generalized Schroder equations, Aequationes Math. 63 (2002), no. 1-2, 110-135. crossref(new window)

9.
R. G. Halburd and R. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. crossref(new window)

10.
R. G. Halburd and R. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.

11.
W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

12.
W. K. Hayman, Angular value distribution of power series with gaps, Proc. Lond. Math. Soc. (3) 24 (1972), no. 4, 590-624. crossref(new window)

13.
J. Heittokangas, I. Laine, J. Rieppo, and D. G. Yang, Meromorphic solutions of some linear functional equations, Aequationes Math. 60 (2000), no. 1-2, 148-166. crossref(new window)

14.
I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.

15.
S. Saks and A. Zygmund, Analytic Functions, Monografie Mat. (Engl. Transl.) Tom 28, Warsaw, 1952.

16.
J. Tu and C. F. Yi, On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Anal. Appl. 340 (2008), no.1, 487-497. crossref(new window)

17.
C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Math. Appl., vol. 557, Kluwer Academic Publishers Group. Dordrecht, 2003.

18.
L. Yang, Value Distribution Theory and New Research, Science Press, Beijing, 1982.