JOURNAL BROWSE
Search
Advanced SearchSearch Tips
JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II
Ki, U-Hang; Kurihara, Hiroyuki;
  PDF(new window)
 Abstract
Let M be a real hypersurface of a complex space form with almost contact metric structure (, , , g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}
 Keywords
complex space form;real hypersurface;structure Jacobi operator;Ricci tensor;
 Language
English
 Cited by
1.
REAL HYPERSURFACES OF NON-FLAT COMPLEX SPACE FORMS WITH GENERALIZED ξ-PARALLEL JACOBI STRUCTURE OPERATOR, Glasgow Mathematical Journal, 2016, 58, 03, 677  crossref(new windwow)
 References
1.
J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic spaces, J. Reine Angew. Math. 395 (1989), 132-141.

2.
T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), no. 2, 481-499.

3.
U.-H. Ki and H. Kurihara, Real hypersurfaces with cyclic-parallel structure Jacobi operators in a nonflat complex space form, Bull. Aust. Math. Soc. 81 (2010), no. 2, 260-273. crossref(new window)

4.
U.-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J. 32 (2009), 5-23.

5.
U.-H. Ki, H. Kurihara, and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math. 33 (2009), no. 1, 39-56.

6.
U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.

7.
M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), no. 1, 137-149. crossref(new window)

8.
H. Kurihara, The structure Jacobi operator for real hypersurfaces in the complex projective plane and the complex hyperbolic plane, Tsukuba J. Math. 35 (2011), 53-66.

9.
M. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), no. 2, 245-261.

10.
M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364. crossref(new window)

11.
M. Ortega, J. D. Perez, and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36 (2006), no. 5, 1603-1613. crossref(new window)

12.
J. D. Perez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 3, 459-469.

13.
R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.

14.
R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516. crossref(new window)