JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE LINEAR 2-ARBORICITY OF PLANAR GRAPHS WITHOUT ADJACENT SHORT CYCLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE LINEAR 2-ARBORICITY OF PLANAR GRAPHS WITHOUT ADJACENT SHORT CYCLES
Chen, Hong-Yu; Tan, Xiang; Wu, Jian-Liang;
  PDF(new window)
 Abstract
Let G be a planar graph with maximum degree . The linear 2-arboricity (G) of G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. In this paper, we prove that (1) if G has no adjacent 3-cycles; (2) if G has no adjacent 4-cycles; (3) if any 3-cycle is not adjacent to a 4-cycle of G.
 Keywords
planar graph;linear 2-arboricity;cycle;
 Language
English
 Cited by
1.
On the linear 2-arboricity of planar graph without normally adjacent 3-cycles and 4-cycles, International Journal of Computer Mathematics, 2017, 94, 5, 981  crossref(new windwow)
 References
1.
R. E. L. Aldred and N. C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin. 18 (1998), 97-104.

2.
J. C. Bermond, J. L. Fouquet, M. Habib, and B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984), no. 2-3, 123-132. crossref(new window)

3.
G. J. Chang, Algorithmic aspects of linear k-arboricity, Taiwanese J. Math. 3 (1999), no. 1, 73-81.

4.
G. J. Chang, B. L. Chen, H. L. Fu, and K. C. Huang, Linear k-arboricity on trees, Discrete Appl. Math. 103 (2000), no. 1-3, 281-287. crossref(new window)

5.
B. L. Chen, H. L. Fu, and K. C. Huang, Decomposing graphs into forests of paths with size less than three, Australas. J. Combin. 3 (1991), 55-73.

6.
H. L. Fu and K. C. Huang, The linear 2-arboricity of complete bipartite graphs, Ars Combin. 38 (1994), 309-318.

7.
M. Habib and B. Peroche, Some problems about linear arboricity, Discrete Math. 41 (1982), no. 2, 219-220. crossref(new window)

8.
B. Jackson and N. C. Wormald, On linear k-arboricity of cubic graphs, Discrete Math. 162 (1996), no. 1-3, 293-297. crossref(new window)

9.
K. W. Lih, L. D. Tong, and W. F. Wang, The linear 2-arboricity of planar graphs, Graphs Combin. 19 (2003), no. 2, 241-248.

10.
Q. Ma and J. L. Wu, Planar graphs without 5-cycles or without 6-cycles, Discrete Math. (2008), doi:10.1016/j.disc.2008.07.033. crossref(new window)

11.
J. Qian and W. F. Wang, The linear 2-arboricity of planar graphs without 4-cycles, J. Zhejiang Norm. Univ. 29 (2006), no. 2, 121-125.

12.
C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory Ser. B 75 (1999), no. 1, 100-109. crossref(new window)