HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 49, Issue 1, 2012, pp.175-195
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2012.49.1.175

Title & Authors

HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS

Kong, Jae-Hoon; Jeong, Seung-Pil; Kim, Gwang-Il;

Kong, Jae-Hoon; Jeong, Seung-Pil; Kim, Gwang-Il;

Abstract

Representing planar Pythagorean hodograph (PH) curves by the complex roots of their hodographs, we standardize Farouki's double cubic method to become the undetermined junction point (UJP) method, and then prove the generic existence of solutions for general Hermite interpolation problems. We also extend the UJP method to solve Hermite interpolation problems with multiple PH cubics, and also prove the generic existence of solutions which consist of triple PH cubics with junction points. Further generalizing the UJP method, we go on to solve Hermite interpolation problems using two PH quintics with a junction point, and we also show the possibility of applying the modi e UJP method to Hermite interpolation.

Keywords

Pythagorean hodograph (PH) curve;complex representation; Hermite interpolation; Hermite interpolation;undetermined junction point (UJP) method;

Language

English

Cited by

1.

TIME REPARAMETRIZATION OF PIECEWISE PYTHAGOREAN-HODOGRAPH $C^1$ HERMITE INTERPOLANTS,;;

Journal of applied mathematics & informatics, 2012. vol.30. 3_4, pp.381-393

1.

2.

References

1.

G. Albrecht and R. T. Farouki, Construction of $C^{2}$ Pythagorean-hodograph interpolating splines by the homotopy method, Adv. Comput. Math. 5 (1996), no. 4, 417-442.

2.

H. I. Choi, C. Y. Han, H. P. Moon, K. H. Roh, and N. S.Wee, Medial axis transformation and offset curves by Minkowski Pythagorean hodograph curves, Computer-Aided Design 31 (1999), 59-72

3.

H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational parametrization of curves and surfaces, Advances in Computational Mathematics 17 (2001), 5-48.

4.

R. T. Farouki, Pythagorean hodograph curves in practical use, Geometry processing for design and manufacturing, 3-33, SIAM, Philadelphia, PA, 1992.

5.

R. T. Farouki, The conformal map $z{\rightarrow}z^{2}$ of the hodograph plane, Comput. Aided Geom. Design 11 (1994), no. 4, 363-390.

6.

R. T. Farouki, The elastic bending energy of Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996), no. 3, 227-241.

7.

R. T. Farouki, M. Al-Kandari, and T. Sakkalis, Hermite interpolation by rotation- invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math. 17 (2002), no. 4, 369-383.

8.

R. T. Farouki and C. Y. Han, Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves, Comput. Aided Geom. Design 20 (2003), no. 7, 435-454.

9.

R. T. Farouki, J. Manjunathaiah, D. Nicholas, G.-F. Yuan, and S. Jee, Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Computer Aided Geometric Design 3 (1998), 631-640.

10.

R. T. Farouki, J. Manjunathaiah, and G.-F. Yuan, G codes for the specification of Pythagorean-hodograph tool paths and associated feedrate functions on open-architecture CNC machines, International Journal of Machine Tools and Manufacture 39 (1999), 123-142.

11.

R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean-hodograph quintics, Math. Comp. 64 (1995), no. 212, 1589-1609.

12.

R. T. Farouki and J. Peters, Smooth curve design with double-Tschirnhausen cubics, Ann. Numer. Math. 3 (1996), no. 1-4, 63-82.

13.

R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990), no. 5, 736-752.

14.

R. T. Farouki and T. Sakkalis, Pythagorean hodograph space curves, Adv. Comput. Math. 2 (1994), no. 1, 41-66.

15.

R. T. Farouki and S. Shah, Real-time CNC interpolator for Pythagorean hodograph curves, Comput. Aided Geom. Design 13 (1996), 583-600.

16.

Z. Habib and M. Sakai, $G^{2}$ Pythagorean hodograph quintic transition between two circles with shape control, Comput. Aided Geom. Design 24 (2007), no. 5, 252-266.

17.

Z. Habib and M. Sakai, Transition between concentric or tangent circles with a single segment of $G^{2}$ PH quintic curve, Comput. Aided Geom. Design 25 (2008), no. 4-5, 247-257.

18.

B. Juttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comp. 70 (2001), no. 235, 1089-1111.

19.

B. Juttler and C. Maurer, Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling, Computer-Aided Design 31 (1999), 73-83.

20.

G. I. Kim and M. H. Ahn, $C^{1}$ Hermite interpolation using MPH quartic, Comput. Aided Geom. Design 20 (2003), no. 7, 469-492.

21.

G. I. Kim, J. H. Kong, and S. Lee, First order Hermite interpolation with spherical Pythagorean-hodograph curves, J. Appl. Math. Comput. 23 (2007), no. 1-2, 73-86.

22.

G. I. Kim and S. Lee, Pythagorean-hodograph preserving mappings, J. Comput. Appl. Math. 216 (2008), no. 1, 217-226.

23.

J. H. Kong, S. P. Jeong, S. Lee, and G. I. Kim, $C^{1}$ Hermite interpolation with simple planar PH curves by speed reparametrization, Comput. Aided Geom. Design 25 (2008), no. 4-5, 214-229.

24.

C. Manni, A. Sestini, R. T. Farouki, and C. Y. Han, Characterization and construction of helical polynomial space curves, J. Comput. Appl. Math. 162 (2004), no. 2, 365-392.

25.

H. P. Moon, Minkowsi Pythagorean hodographs, Comput. Aided Geom. Design 25 (2008), no. 4-5, 739-753.

26.

F. Pelosi, R. T. Farouki, C. Manni, and A. Sestini, Geometric Hermite interpolation by spatial Pythagorean hodograph cubics, Adv. Comput. Math. 22 (2005), no. 4, 325-352.

27.

F. Pelosi, M. L. Sampoli, R. T. Farouki, and C. Manni, A control polygon scheme for design of planar $C^{2}$ PH quintic spline curves, Comput. Aided Geom. Design 24 (2007), no. 1, 28-52.

28.

3H. Pottmann, Curve design with rational Pythagorean-hodograph curves, Adv. Comput. Math. 3 (1995), no. 1-2, 147-170.

29.

Z. Sir and B. Juttler, Euclidean and Minkowski Pythagorean hodograph curves over planar cubics, Comput. Aided Geom. Design 22 (2005), no. 8, 753-770.

30.

Z. Sir and B. Juttler, $C^{2}$ Hermite interpolation by Pythagorean hodograph space curves, Mathematics of Computation 76 (2007), no. 259, 1373-1391.

31.

D. J. Walton and D. S. Meek, A Pythagorean hodograph quintic spiral, Computer-Aided Design 28 (1996), no. 12, 943-950.