JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS
Kong, Jae-Hoon; Jeong, Seung-Pil; Kim, Gwang-Il;
  PDF(new window)
 Abstract
Representing planar Pythagorean hodograph (PH) curves by the complex roots of their hodographs, we standardize Farouki`s double cubic method to become the undetermined junction point (UJP) method, and then prove the generic existence of solutions for general Hermite interpolation problems. We also extend the UJP method to solve Hermite interpolation problems with multiple PH cubics, and also prove the generic existence of solutions which consist of triple PH cubics with junction points. Further generalizing the UJP method, we go on to solve Hermite interpolation problems using two PH quintics with a junction point, and we also show the possibility of applying the modi e UJP method to Hermite interpolation.
 Keywords
Pythagorean hodograph (PH) curve;complex representation; Hermite interpolation; Hermite interpolation;undetermined junction point (UJP) method;
 Language
English
 Cited by
1.
TIME REPARAMETRIZATION OF PIECEWISE PYTHAGOREAN-HODOGRAPH $C^1$ HERMITE INTERPOLANTS,;;

Journal of applied mathematics & informatics, 2012. vol.30. 3_4, pp.381-393 crossref(new window)
1.
Planar C1 Hermite interpolation with PH cuts of degree (1,3) of Laurent series, Computer Aided Geometric Design, 2014, 31, 9, 689  crossref(new windwow)
2.
Minkowski Pythagorean-hodograph preserving mappings, Journal of Computational and Applied Mathematics, 2016, 308, 166  crossref(new windwow)
3.
C 1 Hermite interpolation with PH curves by boundary data modification, Journal of Computational and Applied Mathematics, 2013, 248, 47  crossref(new windwow)
 References
1.
G. Albrecht and R. T. Farouki, Construction of $C^{2}$Pythagorean-hodograph interpolating splines by the homotopy method, Adv. Comput. Math. 5 (1996), no. 4, 417-442. crossref(new window)

2.
H. I. Choi, C. Y. Han, H. P. Moon, K. H. Roh, and N. S.Wee, Medial axis transformation and offset curves by Minkowski Pythagorean hodograph curves, Computer-Aided Design 31 (1999), 59-72 crossref(new window)

3.
H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational parametrization of curves and surfaces, Advances in Computational Mathematics 17 (2001), 5-48. crossref(new window)

4.
R. T. Farouki, Pythagorean hodograph curves in practical use, Geometry processing for design and manufacturing, 3-33, SIAM, Philadelphia, PA, 1992.

5.
R. T. Farouki, The conformal map $z{\rightarrow}z^{2}$ of the hodograph plane, Comput. Aided Geom. Design 11 (1994), no. 4, 363-390. crossref(new window)

6.
R. T. Farouki, The elastic bending energy of Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996), no. 3, 227-241. crossref(new window)

7.
R. T. Farouki, M. Al-Kandari, and T. Sakkalis, Hermite interpolation by rotation- invariant spatial Pythagorean-hodograph curves, Adv. Comput. Math. 17 (2002), no. 4, 369-383. crossref(new window)

8.
R. T. Farouki and C. Y. Han, Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves, Comput. Aided Geom. Design 20 (2003), no. 7, 435-454. crossref(new window)

9.
R. T. Farouki, J. Manjunathaiah, D. Nicholas, G.-F. Yuan, and S. Jee, Variable-feedrate CNC interpolators for constant material removal rates along Pythagorean-hodograph curves, Computer Aided Geometric Design 3 (1998), 631-640.

10.
R. T. Farouki, J. Manjunathaiah, and G.-F. Yuan, G codes for the specification of Pythagorean-hodograph tool paths and associated feedrate functions on open-architecture CNC machines, International Journal of Machine Tools and Manufacture 39 (1999), 123-142. crossref(new window)

11.
R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean-hodograph quintics, Math. Comp. 64 (1995), no. 212, 1589-1609. crossref(new window)

12.
R. T. Farouki and J. Peters, Smooth curve design with double-Tschirnhausen cubics, Ann. Numer. Math. 3 (1996), no. 1-4, 63-82.

13.
R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990), no. 5, 736-752. crossref(new window)

14.
R. T. Farouki and T. Sakkalis, Pythagorean hodograph space curves, Adv. Comput. Math. 2 (1994), no. 1, 41-66. crossref(new window)

15.
R. T. Farouki and S. Shah, Real-time CNC interpolator for Pythagorean hodograph curves, Comput. Aided Geom. Design 13 (1996), 583-600. crossref(new window)

16.
Z. Habib and M. Sakai, $G^{2}$ Pythagorean hodograph quintic transition between two circles with shape control, Comput. Aided Geom. Design 24 (2007), no. 5, 252-266. crossref(new window)

17.
Z. Habib and M. Sakai, Transition between concentric or tangent circles with a single segment of $G^{2}$ PH quintic curve, Comput. Aided Geom. Design 25 (2008), no. 4-5, 247-257. crossref(new window)

18.
B. Juttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comp. 70 (2001), no. 235, 1089-1111. crossref(new window)

19.
B. Juttler and C. Maurer, Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling, Computer-Aided Design 31 (1999), 73-83. crossref(new window)

20.
G. I. Kim and M. H. Ahn, $C^{1}$ Hermite interpolation using MPH quartic, Comput. Aided Geom. Design 20 (2003), no. 7, 469-492. crossref(new window)

21.
G. I. Kim, J. H. Kong, and S. Lee, First order Hermite interpolation with spherical Pythagorean-hodograph curves, J. Appl. Math. Comput. 23 (2007), no. 1-2, 73-86. crossref(new window)

22.
G. I. Kim and S. Lee, Pythagorean-hodograph preserving mappings, J. Comput. Appl. Math. 216 (2008), no. 1, 217-226. crossref(new window)

23.
J. H. Kong, S. P. Jeong, S. Lee, and G. I. Kim, $C^{1}$ Hermite interpolation with simple planar PH curves by speed reparametrization, Comput. Aided Geom. Design 25 (2008), no. 4-5, 214-229. crossref(new window)

24.
C. Manni, A. Sestini, R. T. Farouki, and C. Y. Han, Characterization and construction of helical polynomial space curves, J. Comput. Appl. Math. 162 (2004), no. 2, 365-392. crossref(new window)

25.
H. P. Moon, Minkowsi Pythagorean hodographs, Comput. Aided Geom. Design 25 (2008), no. 4-5, 739-753.

26.
F. Pelosi, R. T. Farouki, C. Manni, and A. Sestini, Geometric Hermite interpolation by spatial Pythagorean hodograph cubics, Adv. Comput. Math. 22 (2005), no. 4, 325-352. crossref(new window)

27.
F. Pelosi, M. L. Sampoli, R. T. Farouki, and C. Manni, A control polygon scheme for design of planar $C^{2}$ PH quintic spline curves, Comput. Aided Geom. Design 24 (2007), no. 1, 28-52. crossref(new window)

28.
3H. Pottmann, Curve design with rational Pythagorean-hodograph curves, Adv. Comput. Math. 3 (1995), no. 1-2, 147-170. crossref(new window)

29.
Z. Sir and B. Juttler, Euclidean and Minkowski Pythagorean hodograph curves over planar cubics, Comput. Aided Geom. Design 22 (2005), no. 8, 753-770. crossref(new window)

30.
Z. Sir and B. Juttler, $C^{2}$ Hermite interpolation by Pythagorean hodograph space curves, Mathematics of Computation 76 (2007), no. 259, 1373-1391. crossref(new window)

31.
D. J. Walton and D. S. Meek, A Pythagorean hodograph quintic spiral, Computer-Aided Design 28 (1996), no. 12, 943-950. crossref(new window)

32.
D. J. Walton and D. S. Meek, Geometric Hermite interpolation with Tschirnhausen cubics, J. Comput. Appl. Math. 81 (1997), no. 2, 299-309. crossref(new window)

33.
D. J. Walton and D. S. Meek, $C^{2}$ curve design with a pair of Pythagorean Hodograph quintic spiral segments, Comput. Aided Geom. Design 24 (2007), no. 5, 267-285. crossref(new window)