JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE LOG-CONVEXITY OF ANOTHER CLASS OF ONE-PARAMETER MEANS AND ITS APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE LOG-CONVEXITY OF ANOTHER CLASS OF ONE-PARAMETER MEANS AND ITS APPLICATIONS
Yang, Zhen-Hang;
  PDF(new window)
 Abstract
In this paper, the log-convexity of another class one-parameter mean is investigated. As applications, some new upper and lower bounds of logarithmic mean, new estimations for identric mean and new inequalities for power-exponential mean and exponential-geometric mean are first given.
 Keywords
Stolarsky mean;Gini mean;one-parameter homogeneous functions;log-convexity;inequality;
 Language
English
 Cited by
1.
SCHUR POWER CONVEXITY OF GINI MEANS,;

대한수학회보, 2013. vol.50. 2, pp.485-498 crossref(new window)
1.
Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean, Journal of Inequalities and Applications, 2016, 2016, 1  crossref(new windwow)
2.
SCHUR POWER CONVEXITY OF GINI MEANS, Bulletin of the Korean Mathematical Society, 2013, 50, 2, 485  crossref(new windwow)
3.
Sharp bounds for the arithmetic-geometric mean, Journal of Inequalities and Applications, 2014, 2014, 1, 192  crossref(new windwow)
4.
Three families of two-parameter means constructed by trigonometric functions, Journal of Inequalities and Applications, 2013, 2013, 1, 541  crossref(new windwow)
 References
1.
H. Alzer, Ungleichungen fur Mittelwerte, Arch. Math. 47 (1986), no. 5, 422-426. crossref(new window)

2.
H. Alzer, Two inequalities for means, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no.1, 11-16.

3.
H. Alzer, Aufgabe 987, Elem. Math. 43 (1988), 93.

4.
H. Alzer, Uer eine einparametrige familie von Mitlewerten, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber 1987 (1988), 23-29.

5.
H. Alzer, Uer eine einparametrige familie von Mitlewerten. II, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber 1988 (1989), 23-29.

6.
H. Alzer, On Stolarsky's mean value family, Int. J. Math. Educ. Sci. Technol. 20 (1989), no. 1, 186-189.

7.
J. L. Brenner, A unified treatment and extension of some means of classical analysis I. Comparison theorems, J. Combin. Inform. System Sci. 3 (1978), no. 4, 175-199.

8.
F. Burk, By all means, Amer. Math. Monthly 92 (1985), no. 1, 50.

9.
B. C. Carlson, Some inequalities for hypergeometric functions, Proc. Amer. Math. Soc. 17 (1966), 32-39. crossref(new window)

10.
B. C. Carlson, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615-618. crossref(new window)

11.
W.-S. Cheung and F. Qi, Logarithmic convexity of the one-parameter mean values, Taiwanese J. Math. 11 (2007), no. 1, 231-237.

12.
E. L. Dodd, Some generalizations of the logarithmic mean and of similar means of two variates which become indeterminate when the two variates are equal, Ann. Math. Stat. 12 (1941), 422-428. crossref(new window)

13.
C. Gini, Diuna formula comprensiva delle media, Metron 13 (1938), 3-22.

14.
P. A. Hasto, A monotonicity property of ratios of symmetric homogeneous means, J. Inequal. Pure Appl. Math. 3 (2002), no. 5, Article 71, 23 pp.

15.
G. Jia and J.-D. Cao, A new upper bound of the logarithmic mean, J. Inequal. Pure Appl. Math. 4 (2003), no. 4, Article 80, 4 pp.

16.
O. Kouba, New bounds for the identric mean of two arguments, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article 71, 6 pp.

17.
E. B. Leach and M. Sholander, Extended mean values, Amer. Math. Monthly 85 (1978), no. 2, 84-90. crossref(new window)

18.
E. B. Leach and M. Sholander, Extended mean values II, J. Math. Anal. Appl. 92 (1983), no. 1, 207-223. crossref(new window)

19.
T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly 81 (1974), 879-883. crossref(new window)

20.
E. Neuman and J. Sandor, On certain means of two arguments and their extensions, Int. J. Math. Math. Sci. 2003 (2003), no. 16, 981-993. crossref(new window)

21.
E. Neuman and J. Sandor, Inequalities involving Stolarsky and Gini means, Math. Pannon. 14 (2003), no. 1, 29-44.

22.
E. Neuman, A generalization of an inequality of Jia and Cau, J. Inequal. Pure Appl. Math. 5 (2004), no. 1, Article 15, 4 pp.

23.
B. Ostle and H. L. Terwilliger, A comparison of two means, Proc. Montana Acad. Sci. 17 (1957), 69-70.

24.
Zs. Pales, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988), no. 1, 265-270. crossref(new window)

25.
Zs. Pales, Inequalities for differences of powers, J. Math. Anal. Appl. 131 (1988), no. 1, 271-281. crossref(new window)

26.
A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 678-715 (1980), 15-18.

27.
F. Qi, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1787-1796. crossref(new window)

28.
F. Qi, On a two-parameter family of nonhomogeneous mean values, Tamkang J. Math. 29 (1998), no. 2, 155-163.

29.
J. Sandor, On the identric and logarithmic means, Aequationes Math. 40 (1990), no. 2-3, 261-270. crossref(new window)

30.
J. Sandor, On certain identities for means, Studia Univ. Babes-Bolyai, Math. 37 (1993), no. 4, 7-14.

31.
J. Sandor, On refinements of certain inequalities for means, Arch. Math. (Brno) 31 (1995), no. 4, 279-282.

32.
J. Sandor and T. Trif, Some new inequalities for means of two arguments, Int. J. Math. Math. Sci. 25 (2001), no. 8, 525-532. crossref(new window)

33.
K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87-92. crossref(new window)

34.
K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly 87 (1980), no. 7, 545-548. crossref(new window)

35.
T. Trif, Note on certain inequalities for means in two variables, J. Inequal. Pure Appl. Math. 6 (2005), no. 2, Article 43, 5 pp.

36.
R. Yang and D. Cao, Generalizations of the logarithmic mean, J. Ningbo Univ. 2 (1989), no. 1, 105-108.

37.
Zh.-H. Yang, Simple discriminances of convexity of homogeneous functions and applications, Gaodeng Shuxue Yanjiu (Study in College Mathematics) 4 (2004), no. 7, 14-19.

38.
Zh.-H. Yang, On the monotonicity and log-convexity for one-parameter homogeneous functions, RGMIA Res. Rep. Coll. 8 (2005), no. 2, Art. 14.

39.
Zh.-H. Yang, Some identities for means and applications, RGMIA Res. Rep. Coll. 8 (2005), no. 3, Art. 17.

40.
Zh.-H. Yang, On the homogeneous functions with two parameters and its monotonicity, J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 101, 11 pp.

41.
Zh.-H. Yang, On the log-convexity of two-parameter homogeneous functions, Math. Inequal. Appl. 10 (2007), no. 3, 499-516.

42.
Zh.-H. Yang, On the monotonicity and log-convexity of a four-parameter homogeneous mean, J. Ine. Appl. 2008 (2008), Art. ID 149286, 12 pages, doi:10.1155/2008/149286. crossref(new window)