JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DISCRETENESS BY USE OF A TEST MAP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DISCRETENESS BY USE OF A TEST MAP
Li, Liulan; Fu, Xi;
  PDF(new window)
 Abstract
It is well known that one could use a fixed loxodromic or parabolic element of a non-elementary group as a test map to test the discreteness of G. In this paper, we show that a test map need not be in G. We also construct an example to show that the similar result using an elliptic element as a test map does not hold.
 Keywords
discreteness;non-elementary Mbius group;test map;
 Language
English
 Cited by
1.
ON DISCRETENESS OF MÖBIUS GROUPS,;

대한수학회보, 2013. vol.50. 3, pp.747-752 crossref(new window)
1.
ON DISCRETENESS OF MÖBIUS GROUPS, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 747  crossref(new windwow)
 References
1.
Y. Jiang, On the discreteness of Mobius groups in all dimensions, Math. Proc. Camb. Phi. Soc. 136 (2004), no. 3, 547-555. crossref(new window)

2.
T. Jorgensen, On discrete groups of Mobius transformations, Amer. J. Math. 98 (1976), 739-749. crossref(new window)

3.
T. Jorgensen, A note on subgroup of SL$(2,\mathbb{C})$, Quart. J. Math. Oxford Ser. (2) 28 (1977), no. 110, 209-211. crossref(new window)

4.
L. Li and X. Wang, Discreteness criteria for Mobius groups acting on ${\bar{B}}^{n}$ II, Bull. Aust. Math. Soc. 80 (2009), no. 2, 275-290. crossref(new window)

5.
P. Tukia, Differentiability and rigidity of Mobius groups, Invent. Math. 82 (1985), no.3, 557-578. crossref(new window)

6.
P. Tukia and X. Wang, Discreteness of subgroups of SL$(2,\mathbb{C})$ containing elliptic elements, Math. Scand. 91 (2002), no. 2, 214-220.

7.
X. Wang, Dense subgroups of n-dimensional Mobius groups, Math. Z. 243 (2003), no. 4, 643-651. crossref(new window)

8.
X. Wang, L. Li, and W. Cao, Discreteness criteria for Mobius groups acting on ${\bar{B}}^{n}$, Israel J. Math. 150 (2005), 357-368. crossref(new window)

9.
X. Wang and W. Yang, Discreteness criteria for subgroups in SL$(2,\mathbb{C})$, Math. Proc. Camb. Phi. Soc. 124 (1998), 51-55. crossref(new window)

10.
X. Wang and W. Yang, Dense subgroups and discrete subgroups in SL$(2,\mathbb{C})$, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 200, 517-521. crossref(new window)

11.
X. Wang and W. Yang, Generating systems of subgroups in PSL$(2,{\Gamma}_{n})$, Proc. Edinb. Math. Soc. (2) 45 (2002), no. 1, 49-58.

12.
X. Wang and W. Yang, Discreteness criteria of Mobius groups of high dimensions and convergence theorems of Kleinian groups, Adv. Math. 159 (2001), no. 1, 68-82. crossref(new window)

13.
P. Waterman, Mobius transformations in several dimensions, Adv. Math. 101 (1993), no. 1, 87-113. crossref(new window)

14.
P. Waterman, Purely elliptic Mobius groups, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986), 173-178, Math. Sci. Res. Inst. Publ., 11, Springer, New York, 1988.