JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GEOMETRIC QUANTIZATION OF ODD DIMENSIONAL SPINc MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GEOMETRIC QUANTIZATION OF ODD DIMENSIONAL SPINc MANIFOLDS
Wang, Jian; Wang, Yong;
  PDF(new window)
 Abstract
We prove a Guillemin-Sternberg geometric quantization formula for circle action on odd dimensional -manifolds. We prove two Kostant type formulas in this case. As a corollary, we get a cutting formula for the odd spinc quantization.
 Keywords
Toeplitz operators;odd quantization;Kostant formulas;involution;cutting formula;
 Language
English
 Cited by
1.
The equivariant family index theorem in odd dimensions, Acta Mathematica Sinica, English Series, 2015, 31, 7, 1149  crossref(new windwow)
 References
1.
C. da S. Ana, Y. Karshon, and S. Tolman, Quantization of presymplectic manifolds and circle actions, Trans. Amer. Math. Soc. 352 (2000), no. 2, 525-552. crossref(new window)

2.
M. F. Atiyah and I. M. Singer, The index of elliptic operators III, Ann. of Math. (2) 87 (1968), 546-604. crossref(new window)

3.
H. Duistermaat, V. Guillemin, E. Meinrenken, and S. Wu, Symplectic reduction and Riemann-Roch for circle actions, Math. Res. Lett. 2 (1995), no. 3, 259-266. crossref(new window)

4.
H. Fang, Equivariant spectral flow and a Lefschetz theorem on odd-dimensional spin manifolds, Pacific J. Math. 220 (2005), no. 2, 299-312. crossref(new window)

5.
D. Freed, Two index theorems in odd dimensions, Commu. Anal. Geom. 6 (1998), no. 2, 317-329. crossref(new window)

6.
S. Fuchs, Spin-c Quantization, Prequantization and Cutting, Thesis, University of Toronto, 2008.

7.
V. Guillemin, Reduced phase space and Riemann-Roch, Lie theory and geometry, 305-334, Progr. Math., 123, Birkhauser Boston, Boston, MA, 1994.

8.
V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group rep- resentations, Invent. Math. 67 (1982), no. 3, 515-538. crossref(new window)

9.
V. Guillemin, S. Sternberg, and J. Weitsman, Signature quantization, J. Differential Geom. 66 (2004), no. 1, 139-168. crossref(new window)

10.
L. C. Jeffrey and F. C. Kirwan, Localization and quantization conjecture, Topology 36 (1997), no. 3, 647-693. crossref(new window)

11.
L. C. Jeffrey and F. C. Kirwan, Localization for nonabelian group actions, Topology 34 (1995), no. 2, 291-327. crossref(new window)

12.
J. D. Lafferty, Y. L. Yu, and W. P. Zhang, A direct geometric proof of Lefschetz fixed point formulas, Trans. Amer. Math. Soc. 329 (1992), no. 2 571-583. crossref(new window)

13.
H. Lawson and M. Michelsohn, Spin Geometry, Princeton Mathematical Series, 38. Princeton University Press, Princeton, NJ, 1989.

14.
E. Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247-258. crossref(new window)

15.
K. Liu and Y.Wang, Rigidity theorems on odd dimensional manifolds, Pure Appl. Math. Q. 5 (2009), no. 3, 1139-1159. crossref(new window)

16.
E. Meinrenken, On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc. 9 (1996) 373-389. crossref(new window)

17.
E. Meinrenken, Symplectic surgery and the $Spin^{c}$Spinc-Dirac operator, Adv. Math. 134 (1998), no. 2, 240-277. crossref(new window)

18.
Y. Tian and W. Zhang, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), no. 2, 229-259. crossref(new window)

19.
M. Vergne, Multiplicity formula for geometric quantization, Part I., Duke Math. J. 82 (1996), no. 1, 143-179. crossref(new window)

20.
M. Vergne, Multiplicity formula for geometric quantization, Part II, Duke Math. J. 82 (1996), no. 1, 181-194. crossref(new window)

21.
E. Witten, Two dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), no. 4, 303-368. crossref(new window)

22.
W. Zhang, Lectures on Chern-weil Theory and Witten Deformations, Nankai Tracks in Mathematics Vol. 4, World Scientific, Singapore, 2001.