JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SENSITIVITY ANALYSIS FOR A CLASS OF IMPLICIT MULTIFUNCTIONS WITH APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SENSITIVITY ANALYSIS FOR A CLASS OF IMPLICIT MULTIFUNCTIONS WITH APPLICATIONS
Li, Shengjie; Li, Minghua;
  PDF(new window)
 Abstract
In this paper, under some suitable conditions and in virtue of a selection which depends on a vector-valued function and a feasible set map, the sensitivity analysis of a class of implicit multifunctions is investigated. Moreover, by using the results established, the solution sets of parametric vector optimization problems are studied.
 Keywords
selection;sensitivity analysis;implicit multifunction;parametric vector optimization problem;
 Language
English
 Cited by
1.
Some results on sensitivity analysis in set-valued optimization, Positivity, 2017  crossref(new windwow)
 References
1.
T. Amaroq and L. Thibault, On proto-differentiability and strict proto-differentiability of multifunctions of feasible points in perturbed optimization problems, Numer. Funct. Anal. Optim. 16 (1995), 1293-1307. crossref(new window)

2.
J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York, 1984.

3.
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.

4.
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.

5.
J. M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl. 48 (1986), no. 1, 9-52. crossref(new window)

6.
A. L. Dontchev, Implicit function theorems for generalized equations, Math. Programming 70 (1995), no. 1, Ser. A, 91-106.

7.
A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Program- ming, Academic Press, New York, New York, 1983.

8.
A. J. King and R. T. Rockafellar, Sensitivity analysis for nonsmooth generalized equa- tions, Math. Programming 55 (1992), no. 2, Ser. A, 193-212. crossref(new window)

9.
H. Kuk, T. Tanino, and M. Tanaka, Sensitivity analysis in vector optimization, J. Optim. Theory Appl. 89 (1996), no. 3, 713-730. crossref(new window)

10.
A. B. Levy, Implicit multifunction theorems for the sensitivity analysis of variational conditions, Math. Programming 74 (1996), no. 3, Ser. A, 333-350. crossref(new window)

11.
A. B. Levy and R. T. Rockafellar, Variational conditions and the proto-differentiation of partial subgradient mappings, Nonlinear Anal. 26 (1996), no. 12, 1951-1964. crossref(new window)

12.
M. H. Li and S. J. Li, Second-order differential and sensitivity properties of weak vector variational inequalities, J. Optim. Theory Appl. 144 (2010), no. 1, 76-87. crossref(new window)

13.
S. J. Li and K. W. Meng, Contingent derivatives of set-valued maps with applications to vector optimization, submitted. crossref(new window)

14.
S. J. Li, K. W. Meng, and J.-P. Penot, Calculus rules for derivatives of multimaps, Set-Valued Var. Anal. 17 (2009), no. 1, 21-39. crossref(new window)

15.
S. J. Li, H. Yan, and G. Y. Chen, Differential and sensitivity properties of gap functions for vector variational inequalities, Math. Methods Oper. Res. 57 (2003), no. 3, 377-391. crossref(new window)

16.
K. W. Meng and S. J. Li, Differential and sensitivity properties of gap functions for Minty vector variational inequalities, J. Math. Anal. Appl. 337 (2008), no. 1, 386-398. crossref(new window)

17.
J.-P. Penot, Differentiability of relations and differential stability of perturbed optimiza- tion problems, SIAM J. Control Optim. 22 (1984), no. 4 529-551. crossref(new window)

18.
Y. P. Qiu and T. L. Magnanti, Sensitivity analysis for variational inequalities defined on polyhedral sets, Math. Oper. Res. 14 (1989), no. 3, 410-432. crossref(new window)

19.
Y. P. Qiu and T. L. Magnanti, Sensitivity analysis for variational inequalities, Math. Oper. Res. 17 (1992), no. 1, 61-76. crossref(new window)

20.
S. M. Robinson, Generalized equations and their solutions. I. Basic theory, Math. Programming Stud. 10 (1979), 128-141. crossref(new window)

21.
S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), no. 1, 43-62. crossref(new window)

22.
S. M. Robinson, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), no. 2, 292-309. crossref(new window)

23.
R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. H. Poincare Anal. Non Lineaire 6 (1989), suppl., 449-482. crossref(new window)

24.
R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Math. Programming Stud. 17 (1982), 28-66. crossref(new window)

25.
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.

26.
Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Academic Press, New York, 1985.

27.
A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl. 66 (1990), no. 3, 477-487. crossref(new window)

28.
A. Shapiro, Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res. 30 (2005), no. 1, 109-126. crossref(new window)

29.
D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization, J. Optim. Theory Appl. 70 (1991), no. 2, 385-396. crossref(new window)

30.
T. Tanino, Sensitivity analysis in multiobjective optimization, J. Optim. Theory Appl. 56 (1988), no. 3, 479-499. crossref(new window)

31.
R. L. Tobin, Sensitivity analysis for variational inequalities, J. Optim. Theory Appl. 48 (1986), no. 1 191-204. crossref(new window)