JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MATHEMATICAL ANALYSIS OF A MULTIFLUID INTERPENETRATION MIX MODEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MATHEMATICAL ANALYSIS OF A MULTIFLUID INTERPENETRATION MIX MODEL
Jin, Hyeon-Seong;
  PDF(new window)
 Abstract
The equations of a multifluid interpenetration mix model are analyzed. The model is an intermediate mix model in the sense that it is defined by partial pressures but only a single global pressure and a single global temperature. It none-the-less avoids the stability difficulty. It is shown that the model is hyperbolic so that it is mathematically stable.
 Keywords
multiphase flow;averaged equations;hyperbolic models;stability;closures;
 Language
English
 Cited by
 References
1.
M. Baer and J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flows 12 (1986), 861-889. crossref(new window)

2.
Y. Chen, J. Glimm, D. H. Sharp, and Q. Zhang, A two-phase flow model of the Rayleigh- Taylor mixing zone, Phys. Fluids 8 (1996), no. 3, 816-825. crossref(new window)

3.
B. Cheng, J. Glimm, D. Saltz, and D. H. Sharp, Boundary conditions for a two pressure two phase ow model, Physica D 133 (1999), no. 1-4, 84-105. crossref(new window)

4.
B. Cheng, J. Glimm, and D. H. Sharp, Multi-temperature multiphase flow model, Z. Angew. Math. Phys. 53 (2002), no. 2, 211-238. crossref(new window)

5.
D. A. Drew, Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech. 15 (1983), 261-291. crossref(new window)

6.
J. Glimm, H. Jin, M. Laforest, F. Tangerman, and Y. Zhang, A two pressure numerical model of two fluid mixing, Multiscale Model. Simul. 1 (2003), no. 3, 458-484. crossref(new window)

7.
F. Harlow and A. Amsden, Flow of interpenetrating material phases, J. Comput. Phys. 18 (1975), 440-464. crossref(new window)

8.
H. Jin, J. Glimm, and D. H. Sharp, Compressible two-pressure two-phase flow models, Phys. Lett. A 353 (2006), 469-474. crossref(new window)

9.
H. Jin, A study of multi-phase flow models, Indian J. Pure Appl. Math. 40 (2009), no. 3, 201-219.

10.
B. Keyfitz, Admissibility conditions for shocks in conservation laws that change type, SIAM J. Math. Anal. 22 (1991), no. 5, 1284-1292. crossref(new window)

11.
B. Keyfitz, Change of type in simple models of two-phase flow, In M. Shearer, editor, Viscous Profiles and Numerical Approximation of Shock Waves, pages 84-104. SIAM, Philadelphia, PA, 1991.

12.
B. Keyfitz, Mathematical properties of nonhyperbolic models for incompressible two-phase flow, Proceedings of the 4th International Conference on Multiphase Flow, New Orleans, LA, 2001, submitted.

13.
V. H. Ransom and D. L. Hicks, Hyperbolic two-pressure models for two-phase flow, J. Comput. Phys. 53 (1984), no. 1, 124-151. crossref(new window)

14.
R. Saurel and O. LeMetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid. Mech. 431 (2001), 239-271. crossref(new window)

15.
A. Scannapieco and B. Cheng, A multifluid interpenetration mix model, Phys. Lett. A 299 (2002), 49-64. crossref(new window)

16.
S. L. Soo, Particulates and Continuum: Multiphase Fluid Dynamics, Hemisphere, New York, 1989.

17.
H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods, J. Comput. Phys. 56 (1984), no. 3, 363-409. crossref(new window)

18.
G. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969.

19.
D. L. Youngs, Numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Physica D 12 (1984), 32-44. crossref(new window)

20.
D. L. Youngs, Modeling turbulent mixing by Rayleigh-Taylor instability, Physica D 37 (1989), 270-287. crossref(new window)