JOURNAL BROWSE
Search
Advanced SearchSearch Tips
H-SLANT SUBMERSIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
H-SLANT SUBMERSIONS
Park, Kwang-Soon;
  PDF(new window)
 Abstract
In this paper, we define the almost h-slant submersion and the h-slant submersion which may be the extended version of the slant submersion [11]. And then we obtain some theorems which come from the slant submersion`s cases. Finally, we construct some examples for the almost h-slant submersions and the h-slant submersions.
 Keywords
Riemannian submersion;Khler manifold;quaternionic Hermitian manifold;hyperkhler manifold;
 Language
English
 Cited by
1.
SEMI-SLANT SUBMERSIONS,;;

대한수학회보, 2013. vol.50. 3, pp.951-962 crossref(new window)
2.
ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS,;;

대한수학회보, 2014. vol.51. 6, pp.1749-1771 crossref(new window)
3.
H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS,;

대한수학회보, 2016. vol.53. 2, pp.441-460 crossref(new window)
1.
ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS, Bulletin of the Korean Mathematical Society, 2014, 51, 6, 1749  crossref(new windwow)
2.
Pointwise almost h-semi-slant submanifolds, International Journal of Mathematics, 2015, 26, 12, 1550099  crossref(new windwow)
3.
Slant Riemannian submersions from Sasakian manifolds, Arab Journal of Mathematical Sciences, 2016, 22, 2, 250  crossref(new windwow)
4.
Conformal semi-slant submersions, International Journal of Geometric Methods in Modern Physics, 2017, 14, 07, 1750114  crossref(new windwow)
5.
H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS, Bulletin of the Korean Mathematical Society, 2016, 53, 2, 441  crossref(new windwow)
6.
Conformal semi-invariant submersions, Communications in Contemporary Mathematics, 2017, 19, 02, 1650011  crossref(new windwow)
7.
Semi-Slant Submersions from Almost Product Riemannian Manifolds, Demonstratio Mathematica, 2016, 49, 3  crossref(new windwow)
8.
Semi-slant Riemannian map, Quaestiones Mathematicae, 2017, 1  crossref(new windwow)
9.
SEMI-SLANT SUBMERSIONS, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 951  crossref(new windwow)
10.
Anti-Invariant Semi-Riemannian Submersions from Almost Para-Hermitian Manifolds, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
11.
Almost h-semi-slant Riemannian maps to almost quaternionic Hermitian manifolds, Communications in Contemporary Mathematics, 2015, 17, 06, 1550008  crossref(new windwow)
 References
1.
J. P. Bourguignon and H. B. Lawson, A mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino (1989), Special Issue, 143-163.

2.
J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. crossref(new window)

3.
B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.

4.
V. Cortes, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean supersymmetry. I. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp.

5.
A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.

6.
S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. crossref(new window)

7.
S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalised Hopf manifolds, Classical Quantum Gravity 4 (1987), no. 5, 1317-1325. crossref(new window)

8.
S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, The mathematical heritage of C. F. Gauss, 358-371, World Sci. Publ., River Edge, NJ, 1991.

9.
M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. crossref(new window)

10.
B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. crossref(new window)

11.
B. Sahin, slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie Tome 54(102) (2011), no. 1, 93-105.

12.
B. Watson, Almost Hermitian submersions, J. Differential Geometry 11 (1976), no. 1, 147-165.

13.
B. Watson, G, $G^{1}$-Riemannian submersions and nonlinear gauge field equations of general relativity, Global analysis-analysis on manifolds, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.