JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIST EDGE AND LIST TOTAL COLORINGS OF PLANAR GRAPHS WITHOUT 6-CYCLES WITH CHORD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIST EDGE AND LIST TOTAL COLORINGS OF PLANAR GRAPHS WITHOUT 6-CYCLES WITH CHORD
Dong, Aijun; Liu, Guizhen; Li, Guojun;
  PDF(new window)
 Abstract
Giving a planar graph G, let and denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if a planar graph G without 6-cycles with chord, then and where .
 Keywords
list coloring;planar graph;choosability;
 Language
English
 Cited by
 References
1.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.

2.
O. Borodin, A. Kostochka, and D. Woodall, List edge and list total colourings of multi- graphs, J. Combin. Theory Ser. B 71 (1997), no. 2, 184-204. crossref(new window)

3.
J. Cai, J. Hou, X. Zhang, and G. Liu, Edge-choosability of planar graphs without non- induced 5-cycles, Inform. Process. Lett. 109 (2009), no. 7, 343-346. crossref(new window)

4.
F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995), no. 1, 153-158. crossref(new window)

5.
R. Haggkvist and A. Chetwynd, Some upper bounds on the total and list chromatic numbers of multigraphs, J. Graph Theory 16 (1992), no. 5, 503-516. crossref(new window)

6.
R. Haggkvist and J. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997), no. 3, 295-313. crossref(new window)

7.
J. Hou, G. Liu, and J. Cai, Edge-choosability of planar graphs without adjacent triangles or without 7-cycle, Discrete Math. 309 (2009), no. 1, 77-84. crossref(new window)

8.
J. Hou, G. Liu, and J. Cai, List edge and list total colorings of planar graphs without 4-cycles, Theoret. Comput. Sci. 369 (2006), no. 1-3, 250-255. crossref(new window)

9.
J. Hou, G. Liu, and J. Cai, List edge and list total colorings of planar graphs without short cycles, Inform. Process. Lett. 108 (2008), no. 6, 347-351. crossref(new window)

10.
J. Hou, G. Liu, and J. Wu, Some results on list total colorings of planar graphs, Lecture Note in Computer Science 4489 (2007), 320-328.

11.
T. Jensen, B. Toft, Graph Coloring Problem, Wiley-Interscience, New York, 1995.

12.
A. Kostochka, List edge chromatic number of graphs with large girth, Discrete Math. 101 (1992), no. 1-3, 189-201. crossref(new window)

13.
W.Wang and K. Lih, Choosability, edge-choosability and total choosability of outerplane graphs, European J. Combin. 22 (2001), no. 1, 71-78. crossref(new window)

14.
W.Wang and K. Lih, Choosability, Choosability and edge choosability of planar graphs without five cycles, Appl. Math. Lett. 15 (2002), no. 5, 561-565. crossref(new window)

15.
W.Wang and K. Lih, Structural properties and edge choosability of planar graphs without 6-cycles, Combin. Probab. Comput. 10 (2001), no. 3, 267-276.

16.
L. Zhang and B. Wu, Edge choosability of planar graphs without small cycles, Discrete Math. 283 (2004), no. 1-3, 289-293. crossref(new window)