JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE ERROR TERM IN THE PRIME GEODESIC THEOREM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE ERROR TERM IN THE PRIME GEODESIC THEOREM
Avdispahic, Muharem; Gusic, Dzenan;
  PDF(new window)
 Abstract
Taking the integrated Chebyshev-type counting function of the appropriate order, we improve the error term in Park`s prime geodesic theorem for hyperbolic manifolds with cusps. The obtained estimate coincides with the best known result in the Riemann surfaces case.
 Keywords
Ruelle zeta function;prime geodesic theorem;
 Language
English
 Cited by
1.
Ihara zeta functions and class numbers,;

Advanced Studies in Contemporary Mathematics, 2014. vol.24. 4, pp.439-450
1.
Order of Selbergʼs and Ruelleʼs zeta functions for compact even-dimensional locally symmetric spaces, Journal of Mathematical Analysis and Applications, 2014, 413, 1, 525  crossref(new windwow)
 References
1.
M. Avdispahic and L. Smajlovic, On the prime number theorem for a compact Riem- mann surface, Rocky Mountain J. Math. 39 (2009), no. 6, 1837-1845. crossref(new window)

2.
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathemat- ics, Vol. 106 Birkhauser, Boston-Basel-Berlin, 1992.

3.
D. L. DeGeorge, Length spectrum for compact locally symmetric spaces of strictly neg- ative curvature, Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), no. 2, 133-152.

4.
D. Fried, The zeta functions of Ruelle and Selberg, Ann. Sci. Ecole Norm. Sup. (4) 19 (1986), no. 4, 491-517.

5.
R. Gangolli, The length spectrum of some compact manifolds of negative curvature, J. Differential Geom. 12 (1977), no. 3, 403-424.

6.
R. Gangolli and G. Warner, Zeta functions of Selberg's type for some noncompact quo- tients of symmetric spaces of rank one, Nagoya Math. J. 78 (1980), 1-44.

7.
Y. Gon and J. Park, The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps, Math. Ann. 346 (2010), no. 3, 719-767. crossref(new window)

8.
D. Hejhal, The Selberg Trace Formula for PSL (2;R). Vol. I, Lecture Notes in Mathe- matics 548. Springer-Verlag, Berlin-Heidelberg, 1973.

9.
D. Hejhal, The Selberg Trace Formula for PSL (2;R). Vol. II, Lecture Notes in Mathematics 1001. Springer-Verlag, Berlin-Heidelberg, 1983.

10.
H. Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgrupen II, Math. Ann. 142 (1961), 385-398. crossref(new window)

11.
H. Huber, Nachtrag zu [10], Math. Ann. 143 (1961), 463-464. crossref(new window)

12.
J. Park, Ruelle zeta function and prime geodesic theorem for hyperbolic manifolds with cusps, in: G. van Dijk, M. Wakayama (eds.), Casimir Force, Casimir Operators and the Riemann Hypothesis, 9-13 November 2009, Kyushu University, Fukuoka, Japan, Walter de Gruyter, 2010.

13.
W. Parry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), no. 3, 573-591. crossref(new window)

14.
B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces, Trans. Amer. Math. Soc. 233 (1977), 241-247. crossref(new window)