JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INSERTION-OF-FACTORS-PROPERTY ON NILPOTENT ELEMENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INSERTION-OF-FACTORS-PROPERTY ON NILPOTENT ELEMENTS
Baek, Jin-Eon; Chin, Woo-Young; Choi, Ji-Woong; Eom, Tae-Hyun; Jeon, Young-Cheol; Lee, Yang;
  PDF(new window)
 Abstract
We generalize the insertion-of-factors-property by setting nilpotent products of elements. In the process we introduce the concept of a nil-IFP ring that is also a generalization of an NI ring. It is shown that if Kthe's conjecture holds, then every nil-IFP ring is NI. The class of minimal noncommutative nil-IFP rings is completely determined, up to isomorphism, where the minimal means having smallest cardinality.
 Keywords
nilpotent element;IFP ring;nil-IFP ring;NI ring;polynomial ring;
 Language
English
 Cited by
1.
On linearly weak Armendariz rings, Journal of Pure and Applied Algebra, 2015, 219, 4, 1122  crossref(new windwow)
2.
Reflexive property restricted to nilpotents, Journal of Algebra and Its Applications, 2017, 16, 03, 1750044  crossref(new windwow)
 References
1.
D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. crossref(new window)

2.
R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. crossref(new window)

3.
E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. crossref(new window)

4.
E. P. Armendariz, H. K. Koo, and J. K. Park, Isomorphic Ore extensions, Comm. Algebra 15 (1987), no. 12, 2633-2652. crossref(new window)

5.
H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. crossref(new window)

6.
G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and as- sociated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.

7.
V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. crossref(new window)

8.
K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1968), 512-514.

9.
K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.

10.
K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.

11.
I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago-London, 1969.

12.
C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra 28 (2000), no. 10, 4867-4878. crossref(new window)

13.
C. Huh, H. K. Kim, and Y. Lee, Questions on 2-primal rings, Comm. Algebra 26 (1998), no. 2, 595-600. crossref(new window)

14.
S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. crossref(new window)

15.
Y. C. Jeon, Insertion-of-idempotents-property and abelian rings, submitted.

16.
N. K. Kim and Y. Lee, Nil-Armendariz rings and upper nilradicals, submitted.

17.
N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. crossref(new window)

18.
A. A. Klein, Rings of bounded index, Comm. Algebra 12 (1984), no. 1-2, 9-21. crossref(new window)

19.
R. L. Kruse and D. T. Price, Nilpotent Rings, Gordon and Breach, New York, London, Paris, 1969.

20.
J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. crossref(new window)

21.
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.

22.
T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287-2299. crossref(new window)

23.
G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. crossref(new window)

24.
G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520. crossref(new window)

25.
L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.

26.
M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. crossref(new window)

27.
G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. crossref(new window)

28.
A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436. crossref(new window)