JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON CONJUGACY OF p-GONAL AUTOMORPHISMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON CONJUGACY OF p-GONAL AUTOMORPHISMS
Hidalgo, Ruben A.;
  PDF(new window)
 Abstract
In 1995 it was proved by Gonzlez-Diez that the cyclic group generated by a p-gonal automorphism of a closed Riemann surface of genus at least two is unique up to conjugation in the full group of conformal automorphisms. Later, in 2008, Gromadzki provided a different and shorter proof of the same fact using the Castelnuovo-Severi theorem. In this paper we provide another proof which is shorter and is just a simple use of Sylow`s theorem together with the Castelnuovo-Severi theorem. This method permits to obtain that the cyclic group generated by a conformal automorphism of order p of a handlebody with a Kleinian structure and quotient the three-ball is unique up to conjugation in the full group of conformal automorphisms.
 Keywords
Riemann surfaces;conformal automorphisms;fixed points;
 Language
English
 Cited by
1.
On automorphisms groups of cyclic p-gonal Riemann surfaces, Journal of Symbolic Computation, 2013, 57, 61  crossref(new windwow)
2.
On the uniqueness of (p, h)-gonal automorphisms of Riemann surfaces, Archiv der Mathematik, 2012, 98, 6, 591  crossref(new windwow)
 References
1.
G. Castelnuovo, Sulle serie algebriche si gruppi di punti appartenenti ad una curve algebraica, Rend. Real Accad. Lincei (5) 15. Memorie scelte, p. 509.

2.
H. Farkas and I. Kra, Riemann Surfaces, Second edition. Graduate Texts in Mathematics 71, Springer-Verlag, New York, 1992.

3.
G. Gonzalez-Diez, On prime Galois coverings of the Riemann sphere, Ann. Math. Pura Appl. (4) 168 (1995), 1-15. crossref(new window)

4.
G. Gromadzki, On conjugacy of p-gonal automorphisms of Riemann surfaces, Rev. Mat. Complut. 21 (2008), no. 1, 83-87.

5.
R. A. Hidalgo, Automorphism groups of Schottky type, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 183-204.

6.
B. Maskit, Kleinian Groups, GMW, Springer-Verlag, 1987.

7.
D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29-38.

8.
A. Wootton, The full automorphism group of a cyclic p-gonal surface, J. Algebra 312 (2007), no. 1, 377-396. crossref(new window)