JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TRANSVERSE KILLING FORMS ON A KÄAHLER FOLIATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TRANSVERSE KILLING FORMS ON A KÄAHLER FOLIATION
Jung, Seoung-Dal; Jung, Min-Joo;
  PDF(new window)
 Abstract
On a closed, connected Riemannian manifold with a Kahler foliation of codimension , any transverse Killing -form () is parallel.
 Keywords
transverse Killing form;transverse conformal Killing form;Kahler foliation;
 Language
English
 Cited by
1.
TRANSVERSE KILLING FORMS ON COMPLETE FOLIATED RIEMANNIAN MANIFOLDS,;

호남수학학술지, 2014. vol.36. 4, pp.731-737 crossref(new window)
1.
TRANSVERSE KILLING FORMS ON COMPLETE FOLIATED RIEMANNIAN MANIFOLDS, Honam Mathematical Journal, 2014, 36, 4, 731  crossref(new windwow)
2.
Transverse conformal Killing forms on Kähler foliations, Journal of Geometry and Physics, 2015, 90, 29  crossref(new windwow)
3.
$$L^\mathrm{2}$$ L 2 -transverse conformal Killing forms on complete foliated manifolds, Mathematische Zeitschrift, 2017  crossref(new windwow)
 References
1.
J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194. crossref(new window)

2.
S. D. Jung, Eigenvalue estimates for the basic Dirac operator on a Riemannian foliation admitting a basic harmonic 1-form, J. Geom. Phys. 57 (2007), no. 4, 1239-1246. crossref(new window)

3.
M. J. Jung and S. D. Jung, Riemannian foliations admitting transversal conformal fields, Geom. Dedicata 133 (2008), 155-168. crossref(new window)

4.
S. D. Jung, K. R. Lee, and K. Richardson, Generalized Obata theorem and its applications on foliations, J. Math. Anal. Appl. 376 (2011), no. 1, 129-135. crossref(new window)

5.
S. D. Jung and K. Richardson, Transverse conformal Killing forms and a Gallot-Meyer Theorem for foliations, Math. Z. 270 (2012), 337-350. crossref(new window)

6.
F. W. Kamber and Ph. Tondeur, Harmonic foliations, Proc. National Science Foundation Conference on Harmonic Maps, 87-121, Tulance, Dec. 1980, Lecture Notes in Math. 949, Springer-Verlag, New York, 1982.

7.
F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. 34 (1982), no. 2, 525-538. crossref(new window)

8.
F. W. Kamber and Ph. Tondeur, De Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), no. 3, 415-431. crossref(new window)

9.
T. Kashiwada and S. Tachibana, On the integrability of Killing-Yano's equation, J. Math. Soc. Japan 21 (1969), 259-265. crossref(new window)

10.
M. Min-Oo, E. A. Ruh, and Ph. Tondeur, Vanishing theorems for the basic cohomology of Riemannian foliations, J. Reine Angew. Math. 415 (1991), 167-174.

11.
A. Moroianu and U. Semmelmann, Twistor forms on Kahler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 4, 823-845.

12.
S. Nishikawa, Ph. Tondeur, Transversal infinitesimal automorphisms for harmonic Kahler foliations, Tohoku Math. J. 40 (1988), no. 4, 599-611. crossref(new window)

13.
J. S. Pak and S. Yorozu, Transverse fields on foliated Riemannian manifolds, J. Korean Math. Soc. 25 (1988), no. 1, 83-92.

14.
E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), no. 6, 1249-1275. crossref(new window)

15.
U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), no. 3, 503-527. crossref(new window)

16.
S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. J. 21 (1969), 56-64. crossref(new window)

17.
S. Tachibana, On Killing tensors in Riemannian manifolds of positive curvature operator, Tohoku Math. J. 28 (1976), 177-184. crossref(new window)

18.
Ph. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, New-York, 1988.

19.
Ph. Tondeur, Geometry of Foliations, Birkhauser-Verlag, Basel; Boston; Berlin, 1997.

20.
K. Yano, Some remarks on tensor fields and curvature, Ann. of Math. 55 (1952), 328- 347. crossref(new window)