JOURNAL BROWSE
Search
Advanced SearchSearch Tips
(1,λ)-EMBEDDED GRAPHS AND THE ACYCLIC EDGE CHOOSABILITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
(1,λ)-EMBEDDED GRAPHS AND THE ACYCLIC EDGE CHOOSABILITY
Zhang, Xin; Liu, Guizhen; Wu, Jian-Liang;
  PDF(new window)
 Abstract
A (1, )-embedded graph is a graph that can be embedded on a surface with Euler characteristic so that each edge is crossed by at most one other edge. A graph is called -linear if there exists an integral constant such that for each . In this paper, it is shown that every (1, )-embedded graph is 4-linear for all possible , and is acyclicly edge-()-choosable for
 Keywords
(1, )-embedded graph;-linear graph;acyclic edge choosability;
 Language
English
 Cited by
1.
On edge colorings of 1-toroidal graphs, Acta Mathematica Sinica, English Series, 2013, 29, 7, 1421  crossref(new windwow)
2.
On total colorings of 1-planar graphs, Journal of Combinatorial Optimization, 2015, 30, 1, 160  crossref(new windwow)
 References
1.
N. Alon, C. J. H. McDiarmid, and B. A. Reed, Acyclic coloring of graphs, Random Structures Algorithms 2 (1991), no. 3, 277-288. crossref(new window)

2.
N. Alon, B. Sudakov, and A. Zaks, Acyclic edge-colorings of graphs, J. Graph Theory 37 (2001), no. 3, 157-167. crossref(new window)

3.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.

4.
T. F. Coleman and J. Cai, The cyclic coloring problem and estimation of sparse Hessian matrices, SIAM J. Algebraic Discrete Methods 7 (1986), no. 2, 221-235. crossref(new window)

5.
T. F. Coleman and J. J. More, Estimation of sparse Hessian matrices and graph coloring problems, Math. Programming 28 (1984), no. 3, 243-270. crossref(new window)

6.
I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007), no. 7-8, 854-865. crossref(new window)

7.
A. Fiedorowicz, M. Halszczak, and N. Narayanan, About acyclic edge colourings of planar graphs, Inform. Process. Lett. 108 (2008), no. 6 412-417. crossref(new window)

8.
B. Grunbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973), 390-408. crossref(new window)

9.
M. Molloy and B. Reed, Further algorithmic aspects of the local lemma, In: it Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998), pp. 524-529.

10.
S. Ndreca, A. Procacci, and B. Scoppola, Improved bounds on coloring of graphs, available online at http://arxiv.org/pdf/1005.1875v1.

11.
G. Ringel, Ein sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965), 107-117. crossref(new window)