JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE IN 3 DIMENSION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE IN 3 DIMENSION
Kang, Yu-Tae; Kim, Jong-Su; Kwak, Se-Ho;
  PDF(new window)
 Abstract
We find a one-parameter family of Riemannian metrics on for for some number with the following property: is the Euclidean metric on , the scalar curvatures of are strictly decreasing in t in the open unit ball and is isometric to the Euclidean metric in the complement of the ball.
 Keywords
scalar curvature;
 Language
English
 Cited by
1.
MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE,;

대한수학회보, 2013. vol.50. 4, pp.1087-1098 crossref(new window)
2.
SCALAR CURVATURE DECREASE FROM A HYPERBOLIC METRIC,;;

한국수학교육학회지시리즈B:순수및응용수학, 2013. vol.20. 4, pp.269-276 crossref(new window)
1.
MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1087  crossref(new windwow)
2.
SCALAR CURVATURE DECREASE FROM A HYPERBOLIC METRIC, The Pure and Applied Mathematics, 2013, 20, 4, 269  crossref(new windwow)
 References
1.
A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik, 3. Folge, Band 10, Springer- Verlag, Berlin Heidelberg, 1987.

2.
Y. Kang and J. Kim, Almost Kahler metrics with non-positive scalar curvature which are Euclidean away from a compact set, J. Korean Math. Soc. 41 (2004), no. 5, 809-820. crossref(new window)

3.
J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. (2) 140 (1994), no. 3, 655-683. crossref(new window)

4.
J. Lohkamp, Curvature h-principles, Ann. of Math. (2) 142 (1995), no. 3, 457-498. crossref(new window)