JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONGLY NIL CLEAN MATRICES OVER R[x]/(x2-1)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONGLY NIL CLEAN MATRICES OVER R[x]/(x2-1)
Chen, Huanyin;
  PDF(new window)
 Abstract
An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. We characterize, in this article, the strongly nil cleanness of and matrices over where is a commutative local ring with characteristic 2. Matrix decompositions over fields are derived as special cases.
 Keywords
strongly nil matrix;characteristic polynomial;local ring;
 Language
English
 Cited by
1.
Rings in which elements are the sum of a nilpotent and a root of a fixed polynomial that commute, Open Mathematics, 2017, 15, 1  crossref(new windwow)
2.
Nil-quasipolar rings, Boletín de la Sociedad Matemática Mexicana, 2014, 20, 1, 29  crossref(new windwow)
3.
Strongly Clean Matrices Over Power Series, Kyungpook mathematical journal, 2016, 56, 2, 387  crossref(new windwow)
 References
1.
G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. crossref(new window)

2.
H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2010), no. 10, 3790-3804. crossref(new window)

3.
H. Chen, Rings Related Stable Range Conditions, Series in Algebra 11, Hackensack, NJ: World Scientific, 2011.

4.
H. Chen, On uniquely clean rings, Comm. Algebra 39 (2011), no. 1, 189-198.

5.
A. J. Diesl, Classes of Strongly Clean Rings, Ph.D. Thesis, University of California, Berkeley, 2006.

6.
T. J. Dorsey, Cleanness and Strong Cleanness of Rings of Matrices, Ph.D. Thesis, University of California, Berkeley, 2006.

7.
L. Fan and X. Yang, A note on strongly clean matrix rings, Comm. Algebra 38 (2010), no. 3, 799-806. crossref(new window)

8.
J. E. Humphreys, Introduction to Lie Algebra and Representation Theory, Springer- Verlag, Beijing, 2006.

9.
Y. Li, Strongly clean matrix rings over local rings, J. Algebra 312 (2007), no. 1, 397-404. crossref(new window)

10.
W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. crossref(new window)

11.
W. K. Nicholson, Clean rings: a survey, Advances in Ring Theory, World Sci. Publ., Hackensack, NJ, 2005, 181-198.

12.
X. Yang and Y. Zhou, Some families of strongly clean rings, Linear Algebra Appl. 425 (2007), no. 1, 119-129. crossref(new window)