JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A GENERALIZATION OF THE LORENTZIAN SPLITTING THEOREM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A GENERALIZATION OF THE LORENTZIAN SPLITTING THEOREM
Yun, Jong-Gug;
  PDF(new window)
 Abstract
In this paper, we obtain a generalized Lorentzian splitting theorem by weakening the assumption of nonnegative Ricci curvature.
 Keywords
splitting theorem;maximum principle;
 Language
English
 Cited by
 References
1.
J. Beem, P. Ehrlich, and K. Easley, Global Lorentzian Geometry, 2nd ed., Marcel Dekker, New York, 1996.

2.
A. Borde, Geodesic focusing, energy conditions and singularities, Classical Quantum Gravity 4 (1987), no. 2, 343-356. crossref(new window)

3.
C. Chicone and P. Ehrlich, Line integration of Ricci curvature and conjugate points in Lorentzian and Riemannian manifolds, Manuscripta Math. 31 (1980), no. 1-3, 297-316. crossref(new window)

4.
J.-H. Eschenburg, The splitting theorem for space-times with strong energy condition, J. Differential Geom. 27 (1988), no. 3, 477-491. crossref(new window)

5.
G. Galloway, The Lorentzian splitting theorem without the completeness assumption, J. Differential Geom. 29 (1989), no. 2, 373-387. crossref(new window)

6.
G. Galloway and A. Horta, Regularity of Lorentzian Busemann Functions, Trans. Amer. Math. Soc. 348 (1996), no. 5, 2063-2084. crossref(new window)

7.
R. P. A. C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Differential Geom. 31 (1990), no. 1, 163-184. crossref(new window)

8.
F. J. Tipler, Singularities and causality violation, Ann. Physics 108 (1977), no. 1, 1-36. crossref(new window)

9.
S.-T. Yau, Problem section, Seminar on Differential Geometry, pp. 669-706, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, N.J., 1982.