JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE
Chang, Jeong-Wook; Hwang, Seung-Su; Yun, Gab-Jin;
  PDF(new window)
 Abstract
In this paper, we deal with a critical point metric of the total scalar curvature on a compact manifold . We prove that if the critical point metric has parallel Ricci tensor, then the manifold is isometric to a standard sphere. Moreover, we show that if an -dimensional Riemannian manifold is a warped product, or has harmonic curvature with non-parallel Ricci tensor, then it cannot be a critical point metric.
 Keywords
the total scalar curvature;critical point metric;Einstein;
 Language
English
 Cited by
1.
THREE DIMENSIONAL CRITICAL POINT OF THE TOTAL SCALAR CURVATURE,;

대한수학회보, 2013. vol.50. 3, pp.867-871 crossref(new window)
1.
A note on critical point metrics of the total scalar curvature functional, Journal of Mathematical Analysis and Applications, 2015, 424, 2, 1544  crossref(new windwow)
2.
THREE DIMENSIONAL CRITICAL POINT OF THE TOTAL SCALAR CURVATURE, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 867  crossref(new windwow)
3.
Critical metrics of the total scalar curvature functional on 4-manifolds, Mathematische Nachrichten, 2015, 288, 16, 1814  crossref(new windwow)
 References
1.
A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987.

2.
R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. crossref(new window)

3.
J. P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.

4.
A. Derdzinski, On compact Riemannian manifolds with harmonic curvature, Math. Ann. 259 (1982), no. 2, 145-152. crossref(new window)

5.
A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. crossref(new window)

6.
A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), no. 3, 259-280.

7.
S. Hwang, Critical points of the total scalar curvature functional on the space of metrics of constant scalar curvature, Manuscripta Math. 103 (2000), no. 2, 135-142. crossref(new window)

8.
S. Hwang and J. W. Chang, Critical points and warped product metrics, Bull. Korean Math. Soc. 41 (2004), no. 1, 117-123. crossref(new window)

9.
S. Hwang and J. W. Chang, The Critical point equation on a four dimensional warped product manifold, Bull. Korean Math. Soc. 43 (2006), no. 4, 679-692. crossref(new window)

10.
O. Kobayashi, A differential equation arising from scalar curvature function, J. Math. Soc. Japan 34 (1982), no. 4, 665-675. crossref(new window)

11.
J. Lafontaine, Remarques sur les varietes conformement plates, Math. Ann. 259 (1982), no. 3, 313-319. crossref(new window)

12.
J. Lafontaine, Sur la geometrie d'une generalisation de l'equation differentielle d'Obata, J. Math. Pures Appl. (9) 62 (1983), no. 1, 63-72.

13.
M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), no. 3, 333-340. crossref(new window)

14.
B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.