JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DEGENERATE SEMILINEAR ELLIPTIC PROBLEMS NEAR RESONANCE WITH A NONPRINCIPAL EIGENVALUE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DEGENERATE SEMILINEAR ELLIPTIC PROBLEMS NEAR RESONANCE WITH A NONPRINCIPAL EIGENVALUE
Suo, Hong-Min; Tang, Chun-Lei;
  PDF(new window)
 Abstract
Using the minimax methods in critical point theory, we study the multiplicity of solutions for a class of degenerate Dirichlet problem in the case near resonance.
 Keywords
degenerate elliptic equations;near resonance;Dirichlet problem;eigenvalue;saddle point;
 Language
English
 Cited by
1.
The Neumann Problem for a Degenerate Elliptic System Near Resonance, Advances in Mathematical Physics, 2017, 2017, 1  crossref(new windwow)
2.
Multiplicity of Solutions for Neumann Problems for Semilinear Elliptic Equations, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
 References
1.
M. Badiale and D. Lupo, Some remarks on a multiplicity result by Mawhin and Schmitt, Acad. Roy. Belg. Bull. Cl. Sci. (5) 65 (1989), no. 6-9, 210224.

2.
P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Differential Equations Appl. 7 (2000), no. 2, 187-99. crossref(new window)

3.
R. Chiappinelli and D. G. de Figueiredo, Bifurcation from infinity and multiple solutions for an elliptic system, Differential Integral Equations 6 (1993), no. 4, 757-771.

4.
R. Chiappinelli, J. Mawhin, and R. Nugari, Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Anal. 18 (1992), no. 12, 1099-1112. crossref(new window)

5.
R. Dautary and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1., Springer-Verlag, Berlin, 1990.

6.
P. De Napoli and M. Mariani, Three solutions for quasilinear equations in Rn near resonance, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Vina del Mar-Valparaiso, 2000), 131-140, Electron. J. Differ. Equ. Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001.

7.
Francisco Odair de Paiva and Eugenio Massa, Semilinear elliptic problems near resonance with a nonprincipal eigenvalue, J. Math. Anal. Appl. 342 (2008), no. 1, 638-650. crossref(new window)

8.
M. Frigon, On a new notion of linking and application to elliptic problems at resonance, J. Differential Equations 153 (1999), no. 1, 96-120. crossref(new window)

9.
D. Lupo and M. Ramos, Some multiplicity results for two-point boundary value problems near resonance, Rend. Sem. Mat. Univ. Politec. Torino 48 (1990), no. 2, 125-135 (1992).

10.
T. F. Ma and M. L. Pelicer, Perturbations near resonance for the p-Laplacian in RN, Abstr. Appl. Anal. 7 (2002), no. 6, 323-334 crossref(new window)

11.
T. F. Ma, M. Ramos, and L. Sanchez, Multiple solutions for a class of nonlinear boundary value problems near resonance: a variational approach, Proceedings of the Second World Congress of Nonlinear Analysts, Part 6 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 6, 3301-3311.

12.
A. Marino, A. M. Micheletti, and A. Pistoia, A nonsymmetric asymptotically linear elliptic problem, Topol. Methods Nonlinear Anal. 4 (1994), no. 2, 289-339.

13.
J. Mawhin and K. Schmitt, Landesman-Lazer type problems at an eigenvalue of odd multiplicity, Results Math. 14 (1988), no. 1-2, 138-146. crossref(new window)

14.
J. Mawhin and K. Schmitt, Nonlinear eigenvalue problems with the parameter near resonance, Ann. Polon. Math. 51 (1990), 241-248.

15.
P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. vol. 65, Conference Board of the Mathematical Sciences, Washington, DC, 1986.

16.
M. Ramos and L. Sanchez, A variational approach to multiplicity in elliptic problems near resonance, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 2, 385-394. crossref(new window)

17.
C. L. Tang and X. P.Wu, Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001), no. 2, 386-397. crossref(new window)