JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONG COHOMOLOGICAL RIGIDITY OF A PRODUCT OF PROJECTIVE SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONG COHOMOLOGICAL RIGIDITY OF A PRODUCT OF PROJECTIVE SPACES
Choi, Su-Young; Suh, Dong-Youp;
  PDF(new window)
 Abstract
We prove that for a toric manifold (respectively, a quasitoric manifold) M, any graded ring isomorphism $H^*(M){\rightarrow}H^*({\Pi}_{i
 Keywords
product of projective spaces;generalized Bott manifold;strong cohomological rigidity;toric manifold;quasitoric manifold;
 Language
English
 Cited by
1.
Torus manifolds and non-negative curvature, Journal of the London Mathematical Society, 2015, 91, 3, 667  crossref(new windwow)
 References
1.
S. Choi, M. Masuda, and D. Y. Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 1-21.

2.
S. Choi, M. Masuda, and D. Y. Suh, Topological classification of generalized Bott manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 2, 1097-1112.

3.
S. Choi, M. Masuda, and D. Y. Suh, Rigidity problems in toric topology, a survey, to appear in Proc. Steklov Inst. Math; arXiv:1102.1359.

4.
M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451. crossref(new window)

5.
R. Friedman and J. W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J. Differential Geom. 27 (1988), no. 2, 297-369.

6.
M. Masuda and T. E. Panov, Semi-free circle actions, Bott towers, and quasitoric manifolds, Mat. Sb. 199 (2008), no. 8, 95-122.