JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON UNITS OF REAL QUADRATIC FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON UNITS OF REAL QUADRATIC FIELDS
Byeon, Dong-Ho; Lee, Sang-Yoon;
  PDF(new window)
 Abstract
For a positive square-free integer , let and be positive integers such that is the fundamental unit of the real quadratic field , where if (mod 4) and otherwise For a given positive integer and a palindromic sequence of positive integers , , , we define the set := { > 0, }. We prove that < for all square-free integer with one possible exception and apply it to Ankeny-Artin-Chowla conjecture and Mordell conjecture.
 Keywords
units;real quadratic fields;
 Language
English
 Cited by
1.
REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE,;;;

대한수학회논문집, 2013. vol.28. 4, pp.735-740 crossref(new window)
2.
ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FUNCTION FIELDS,;

충청수학회지, 2014. vol.27. 2, pp.183-203 crossref(new window)
1.
ON CONTINUED FRACTIONS, FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FUNCTION FIELDS, Journal of the Chungcheong Mathematical Society, 2014, 27, 2, 183  crossref(new windwow)
2.
REAL QUADRATIC FUNCTION FIELDS OF MINIMAL TYPE, Communications of the Korean Mathematical Society, 2013, 28, 4, 735  crossref(new windwow)
3.
Fundamental units and consecutive squarefull numbers, International Journal of Number Theory, 2017, 13, 01, 243  crossref(new windwow)
 References
1.
B. D. Beach, H. C. Williams, and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971), pp. 609-648, Lake-head Univ., Thunder Bay, Ont., 1971.

2.
R. Hashimoto, Ankeny-Artin-Chowla conjecture and continued fraction, J. Number Theory 90 (2001), no. 1, 143-153. crossref(new window)

3.
J. Mc Laughlin, Multi-variable polynomial solutions to Pell's equation and fundamental units in real quadratic fields, Pacific J. Math. 210 (2003), no. 2, 335-349. crossref(new window)

4.
R. A. Mollin, Quadratics, CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.

5.
R. A. Mollin and P. G. Walsh, A note on powerful numbers, quadratic fields and the Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), no. 2, 109-114.

6.
A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000, Math. Comp. 70 (2001), no. 235, 1311-1328.

7.
A. J. Van Der Poorten, H. J. J. te Riele, and H. C. Williams, Corrigenda and addition to \Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000", Math. Comp. 72 (2003), no. 241, 521-523.

8.
K. Tomita, Explicit representation of fundamental units of some real quadratic fields. II, J. Number Theory 63 (1997), no. 2, 275-285. crossref(new window)