JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Lp BOUNDS FOR THE PARABOLIC LITTLEWOOD-PALEY OPERATOR ASSOCIATED TO SURFACES OF REVOLUTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Lp BOUNDS FOR THE PARABOLIC LITTLEWOOD-PALEY OPERATOR ASSOCIATED TO SURFACES OF REVOLUTION
Wang, Feixing; Chen, Yanping; Yu, Wei;
  PDF(new window)
 Abstract
In this paper the authors study the boundedness for parabolic Littlewood-Paley operator $${\mu}{\Phi},{\Omega}(f)(x)
 Keywords
parabolic Littlewood-Paley operator;rough kernel;surfaces of revolution;
 Language
English
 Cited by
1.
PARABOLIC MARCINKIEWICZ INTEGRALS ASSOCIATED TO POLYNOMIALS COMPOUND CURVES AND EXTRAPOLATION,;;

대한수학회보, 2015. vol.52. 3, pp.771-788 crossref(new window)
1.
PARABOLIC MARCINKIEWICZ INTEGRALS ASSOCIATED TO POLYNOMIALS COMPOUND CURVES AND EXTRAPOLATION, Bulletin of the Korean Mathematical Society, 2015, 52, 3, 771  crossref(new windwow)
 References
1.
A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. U.S.A. 48 (1962), 356-365. crossref(new window)

2.
Y. Chen and Y. Ding, The parabolic Littlewood-Paley operator with Hardy space kernels, Canad. Math. Bull. 52 (2009), no. 4, 521-534. crossref(new window)

3.
Y. Ding, D. Fan, and Y. Pan, Lp boundedness of Marcinkiewicz integrals with Hardy space function kernels, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 4, 593-600. crossref(new window)

4.
Y. Ding and Y. Pan, Lp bounds for Marcinkiewicz integrals, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 3, 669-677. crossref(new window)

5.
E. Fabes and N. Riviere, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38.

6.
L. Grafakos and A. Stefanov, Convolution Calderon-Zygmund singular integral operators with rough kernel, Indiana Univ. Math. J. 47 (1998), 455-469.

7.
A. Nagel, N. Riviere, and S. Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395-403. crossref(new window)

8.
E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. crossref(new window)

9.
E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239-1295. crossref(new window)

10.
Q. Xue, Y. Ding, and K. Yabuta, Parabolic Littlewood-Paley g-function with rough kernels, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 12, 2049-2060. crossref(new window)