JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STATISTICAL A-SUMMABILITY OF DOUBLE SEQUENCES AND A KOROVKIN TYPE APPROXIMATION THEOREM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STATISTICAL A-SUMMABILITY OF DOUBLE SEQUENCES AND A KOROVKIN TYPE APPROXIMATION THEOREM
Belen, Cemal; Mursaleen, Mohammad; Yildirim, Mustafa;
  PDF(new window)
 Abstract
In this paper, we define the notion of statistical A-summability for double sequences and find its relation with A-statistical convergence. We apply our new method of summability to prove a Korovkin-type approximation theorem for a function of two variables. Furthermore, through an example, it is shown that our theorem is stronger than classical and statistical cases.
 Keywords
statistical convergence;statistical A-summability;Korovkin theorem;double sequence;positive linear operators;
 Language
English
 Cited by
1.
Tauberian conditions for double sequences which are statistically summable (C,1,1) in fuzzy number space, Journal of Intelligent & Fuzzy Systems, 2017, 33, 2, 947  crossref(new windwow)
2.
Korovkin Second Theorem via -Statistical -Summability, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
3.
Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Applied Mathematics and Computation, 2013, 219, 12, 6911  crossref(new windwow)
4.
Statistical approximation for new positive linear operators of Lagrange type, Applied Mathematics and Computation, 2014, 232, 548  crossref(new windwow)
5.
Generalized weighted statistical convergence and application, Applied Mathematics and Computation, 2013, 219, 18, 9821  crossref(new windwow)
6.
Statistical Approximation for Periodic Functions of Two Variables, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
7.
Approximation Properties For Modifiedq-Bernstein-Kantorovich Operators, Numerical Functional Analysis and Optimization, 2015, 36, 9, 1178  crossref(new windwow)
8.
Some approximation results for generalized Kantorovich-type operators, Journal of Inequalities and Applications, 2013, 2013, 1, 585  crossref(new windwow)
 References
1.
J. Boos, Classical and Modern Methods in Summability, Oxford University Press, New York, 2000.

2.
K. Demirci and S. Karakus, Statistical A-summability of positive linear operators, Math. Comput. Modelling 53 (2011), no. 1-2, 189-195. crossref(new window)

3.
F. Dirik and K. Demirci, Korovkin-type approximation theorem for functions of two variables in statistical sense, Turkish J. Math. 34 (2010), no. 1, 73-83.

4.
O. Duman, E. Erkus, and V. Gupta, Statistical rates on the multivariate approximation theory, Math. Comput. Modelling 44 (2006), no. 9-10, 763-770. crossref(new window)

5.
O. Duman, M. K. Khan, and C. Orhan, A-statistical convergence of approximating operators, Math. Inequal. Appl. 6 (2003), no. 4, 689-699.

6.
O. H. H. Edely and M. Mursaleen, On statistical A-summability, Math. Comput. Modelling 49 (2009), no. 3-4, 672-680. crossref(new window)

7.
H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.

8.
A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129-138. crossref(new window)

9.
H. J. Hamilton, Transformations of multiple sequences, Duke Math. J. 2 (1936), no. 1, 29-60. crossref(new window)

10.
G. H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.

11.
P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.

12.
F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel) 81 (2003), no. 1, 82-89. crossref(new window)

13.
M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), no. 1, 223-231. crossref(new window)

14.
M. Mursaleen and O. H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl. 293 (2004), no. 2, 532-540. crossref(new window)

15.
R. F. Patterson and E. Savas, Korovkin and Weierstrass approximation via lacunary statistical sequences, J. Math. Stat. 1 (2005), no. 2, 165-167. crossref(new window)

16.
A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53 (1900), no. 3, 289-321. crossref(new window)

17.
G. M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), no. 1, 50-73. crossref(new window)

18.
D. D. Stancu, A method for obtaining polynomials of Bernstein type of two variables, Amer. Math. Monthly 70 (1963), no. 3, 260-264. crossref(new window)

19.
V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables, Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 17-19.