JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON LIGHTLIKE HYPERSURFACES OF A GRW SPACE-TIME
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON LIGHTLIKE HYPERSURFACES OF A GRW SPACE-TIME
Kang, Tae-Ho;
  PDF(new window)
 Abstract
We provide a study of lightlike hypersurfaces of a generalized Robertson-Walker (GRW) space-time. In particular, we investigate lightlike hypersurfaces with curvature invariance, parallel second fundamental forms, totally umbilical second fundamental forms, null sectional curvatures and null Ricci curvatures, respectively.
 Keywords
lightlike hypersurface;spacelike slice;generalized Robertson-Walker space-times;curvature invariance;totally umbilical second fundamental form;null sectional curvature;null Ricci curvature;
 Language
English
 Cited by
1.
ON LIGHTLIKE SUBMANIFOLDS OF A GRW SPACE-TIME,;

대한수학회논문집, 2014. vol.29. 2, pp.295-310 crossref(new window)
2.
ON HORIZONTAL LIGHTLIKE HYPERSURFACES OF ROBERTSON-WALKER SPACETIMES,;;

대한수학회논문집, 2015. vol.30. 2, pp.109-121 crossref(new window)
1.
Null hypersurfaces in generalized Robertson–Walker spacetimes, Journal of Geometry and Physics, 2016, 106, 256  crossref(new windwow)
2.
ON LIGHTLIKE SUBMANIFOLDS OF A GRW SPACE-TIME, Communications of the Korean Mathematical Society, 2014, 29, 2, 295  crossref(new windwow)
3.
ON HORIZONTAL LIGHTLIKE HYPERSURFACES OF ROBERTSON-WALKER SPACETIMES, Communications of the Korean Mathematical Society, 2015, 30, 2, 109  crossref(new windwow)
4.
Generalized Robertson-Walker Space-Time Admitting Evolving Null Horizons Related to a Black Hole Event Horizon, International Scholarly Research Notices, 2016, 2016, 1  crossref(new windwow)
 References
1.
A. L. Albujer and S. Haesen, A geometric interpretation of the null sectional curvature, J. Geom. Phys. 60 (2010), no. 3, 471-476. crossref(new window)

2.
C. Atindogbe, J.-P. Ezin, and J. Tossa, Lightlike Einstein hypersurfaces in Lorentzian manifolds with constant curvature, Kodai Math. J. 29 (2006), no. 1, 58-71. crossref(new window)

3.
J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, INC. New York and Basel, 1981.

4.
B.-Y. Chen and J. Van der Veken, Spatial and Lorentzian surfaces in Robertson-Walker space-times, J. Math. Phys. 48 (2007), no. 7, 073509, 12 pp. crossref(new window)

5.
B.-Y. Chen and S. W. Wei, Differential geometry of submanifolds of warped product manifolds $I{\times}_{f}S^{m-1}$(k), J. Geom. 91 (2009), no. 1-2, 21-42. crossref(new window)

6.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.

7.
K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.

8.
K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Birkhauser Verlag AG, 2010.

9.
T. H. Kang, On the geometry of lightlike submanifolds, Kyungpook Math. J. 51 (2011), no. 2, 125-138. crossref(new window)

10.
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1982.

11.
K. Yano and M. Kon, Structures on Manifold, World Scientific, 1984.