JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE PARAMETER DISTRIBUTION SET FOR A SELF-SIMILAR MEASURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE PARAMETER DISTRIBUTION SET FOR A SELF-SIMILAR MEASURE
Baek, In-Soo;
  PDF(new window)
 Abstract
The parameter lower (upper) distribution set corresponds to the cylindrical lower or upper local dimension set for a self-similarmeasure on a self-similar set satisfying the open set condition.
 Keywords
Hausdorff dimension;packing dimension;self-similar set;distribution set;local dimension set;
 Language
English
 Cited by
1.
THE DIMENSIONS OF THE MINIMUM AND MAXIMUM CYLINDRICAL LOCAL DIMENSION SETS,;

충청수학회지, 2015. vol.28. 1, pp.29-38 crossref(new window)
2.
SPECTRAL CLASSES AND THE PARAMETER DISTRIBUTION SET,;

대한수학회논문집, 2015. vol.30. 3, pp.221-226 crossref(new window)
1.
THE DIMENSIONS OF THE MINIMUM AND MAXIMUM CYLINDRICAL LOCAL DIMENSION SETS, Journal of the Chungcheong Mathematical Society, 2015, 28, 1, 29  crossref(new windwow)
2.
SPECTRAL CLASSES AND THE PARAMETER DISTRIBUTION SET, Communications of the Korean Mathematical Society, 2015, 30, 3, 221  crossref(new windwow)
 References
1.
I.-S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292 (2004), no. 1, 294-302. crossref(new window)

2.
I.-S. Baek, Derivative of the Riesz-Nagy -Takacs function, Bull. Korean Math. Soc. 48 (2011), no. 2, 261-275. crossref(new window)

3.
I.-S. Baek, The derivative and moment of the generalized Riesz-Nagy-Takacs function, preprint.

4.
I.-S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267-287. crossref(new window)

5.
R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Adv. Math. 92 (1992), no. 2, 196-236. crossref(new window)

6.
G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer Verlag, 1990.

7.
M. Elekes, T. Keleti, and A. Mathe, Self-similar and self-affine sets; measures of the intersection of two copies, Ergodic Theory Dynam. Systems 30 (2010), no. 2, 399-440. crossref(new window)

8.
K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, 1997.

9.
W. Li, An equivalent definition of packing dimension and its application, Nonlinear Anal. Real World Appl. 10 (2009), no. 3, 1618-1626. crossref(new window)

10.
M. Moran, Multifractal components of multiplicative set functions, Math. Nachr. 229 (2001), 129-160. crossref(new window)

11.
L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), no. 1, 82-196. crossref(new window)

12.
L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of a self-similar measures, J. London Math. Soc. 67 (2003), no. 3, 103-122. crossref(new window)

13.
A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), no. 1, 111-115. crossref(new window)