JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CO-CONTRACTIONS OF GRAPHS AND RIGHT-ANGLED COXETER GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CO-CONTRACTIONS OF GRAPHS AND RIGHT-ANGLED COXETER GROUPS
Kim, Jong-Tae; Moon, Myoung-Ho;
  PDF(new window)
 Abstract
We prove that if is a co-contraction of , then the right-angled Coxeter group embeds into . Further, we provide a graph without an induced long cycle while does not contain a hyperbolic surface group.
 Keywords
right-angled Artin group;right-angled Coxeter group;hyperbolic surface subgroup;
 Language
English
 Cited by
1.
SURFACE SUBGROUPS OF GRAPH PRODUCTS OF GROUPS, International Journal of Algebra and Computation, 2012, 22, 08, 1240003  crossref(new windwow)
 References
1.
G. Baumslag, Topics in Combinatorial Group Theory, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 1993.

2.
R. W. Bell. Combinatorial methods for detecting surface subgroups in right-angled Artin groups, arxiv.org/1012.4208.

3.
R. Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007), 141-158. crossref(new window)

4.
M. W. Davis and T. Januszkiewicz, Right-angled Artin groups are commensurable with right-angled Coxeter groups, J. Pure Appl. Algebra 153 (2000), no. 3, 229-235. crossref(new window)

5.
C. McA. Gordon, D.D. Long, and A. W. Reid, Surface subgroups of Coxeter and Artin groups, J. Pure Appl. Algebra 189 (2004), no. 1-3, 135-148. crossref(new window)

6.
J. Gross and T. W. Tucker, Topological Graph Theory, A Wiley-Interscience Publication, John Wiley and Sons, 1987.

7.
S. Kim, Hyperbolic Surface Subgroups of Right-Angled Artin Groups and Graph Products of Groups, PhD thesis, Yale University, 2007.

8.
S. Kim, Co-contractions of graphs and right-angled Artin groups, Algebr. Geom. Topol. 8 (2008), no. 2, 849-868. crossref(new window)

9.
R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, Heidelberg, New York, 1977.

10.
W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Dover Publications Inc., 1976.

11.
W. Massey, Algebraic Topology: An Introduction, GTM 56, Springer, 1977.

12.
P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555-565. crossref(new window)

13.
H. Servatius, C. Droms, and B. Servatius, Surface subgroups of graph group, Proc. Amer. Math. Soc. 106 (1989), no. 3, 573-578. crossref(new window)