JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REMARK CONCERNING UNIVERSAL CURVATURE IDENTITIES ON 4-DIMENSIONAL RIEMANNIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REMARK CONCERNING UNIVERSAL CURVATURE IDENTITIES ON 4-DIMENSIONAL RIEMANNIAN MANIFOLDS
Euh, Yun-Hee; Jeong, Cho-Hee; Park, Jeong-Hyeong;
  PDF(new window)
 Abstract
We shall prove the universality of the curvature identity for the 4-dimensional Riemannian manifold using a different method than that used by Gilkey, Park, and Sekigawa [5].
 Keywords
generalized Gauss-Bonnet formula;4-dimensional curvature identity;
 Language
English
 Cited by
1.
Transplanting geometrical structures, Differential Geometry and its Applications, 2013, 31, 3, 374  crossref(new windwow)
 References
1.
M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. Ecole Norm. Sup. 4 3 (1970), 285-294.

2.
Y. Euh, J. H. Park, and K. Sekigawa, A Curvature identity on a 4-dimensional Riemannian manifold, Results. Math., in press, doi 10.1007/s00025-011-0164-3.

3.
Y. Euh, J. H. Park, and K. Sekigawa, A generalization of a 4-dimensional Einstein manifold, to appear Mathematica Slovaca.

4.
Y. Euh, J. H. Park, and K. Sekigawa, Critical metrics for squared-norm functionals of the curvature on 4-dimensional manifolds, Differential Geom. Appl. 29 (2011), no. 5, 642-646. crossref(new window)

5.
P. Gilkey, J. H. Park, and K. Sekigawa, Universal curvature identities, Differential Geom. Appl. 29 (2011), no. 6, 770-778. crossref(new window)

6.
P. Gilkey, J. H. Park, and K. Sekigawa, The spanning set, unpublished.

7.
M.-L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var. Partial Differential Equations 32 (2008), no. 2, 175-189. crossref(new window)

8.
M.-L. Labbi, On generalized Einstein metrics, Balkan J. Geom. Appl. 15 (2010), no. 2, 69-77.

9.
E. Puffini, Curvature identities, unpublished.

10.
H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918), no. 3-4, 384-411. crossref(new window)