JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SINGLY-PERIODIC MINIMAL SURFACES IN ℍ2×ℝ
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SINGLY-PERIODIC MINIMAL SURFACES IN ℍ2×ℝ
Pyo, Jun-Cheol;
  PDF(new window)
 Abstract
We construct three kinds of complete embedded singly-periodic minimal surfaces in . The first one is a 1-parameter family of minimal surfaces which is asymptotic to a horizontal plane and a vertical plane; the second one is a 2-parameter family of minimal surfaces which has a fundamental piece of finite total curvature and is asymptotic to a finite number of vertical planes; the last one is a 2-parameter family of minimal surfaces which fill by finite Scherk's towers.
 Keywords
complete minimal surface;singly-periodic surface;product space;
 Language
English
 Cited by
 References
1.
J. Choe and R. Gulliver, Embedded minimal surfaces and total curvature of curves in a manifold, Math. Res. Lett. 10 (2003), no. 2-3, 343-362. crossref(new window)

2.
B. Daniel, Isometric immersions into $S^{n}{\times}R\;and\;H^{n}{\times}R$ and applications to minimal surfaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6255-6282. crossref(new window)

3.
L. Hauswirth, Minimal surfaces of Riemann type in three-dimensional product manifolds, Pacific J. Math. 224 (2006), no. 1, 91-117. crossref(new window)

4.
L. Hauswirth, R. Sa Earp, and E. Toubiana, Associate and conjugate minimal immersions in M ${\times}$ R, Tohoku Math. J. (2) 60 (2008), no. 2, 267-286. crossref(new window)

5.
D. Joyce, Tiling the hyperbolic plane, http://aleph0.clarku.edu/djoyce.

6.
H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988), no. 1, 83-114. crossref(new window)

7.
Y. Kim, S. Koh, H. Shin, and S. Yang, Helicoids in $S^{2}{\times}R\;and\;H^{2}{\times}R$, Pacific J. Math. 242 (2009), no. 2, 281-297. crossref(new window)

8.
F. Morabito and M. Rodriguez, Saddle tower in $H^{2}{\times}R$, to appear Journal de l'Institut de Mathematiques de Jussieu.

9.
C. B. Morrey, The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807-851. crossref(new window)

10.
B. Nelli and H. Rosenberg, Minimal surfaces in $H^{2}{\times}R$, Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 2, 263-292. crossref(new window)

11.
J. Pyo, New complete embedded minimal surfaces in $H^{2}{\times}R$, Ann. Global Anal. Geom. 40 (2011), no. 2, 167-176. crossref(new window)

12.
H. Rosenberg, Minimal surfaces in $M^{2}{\times}R$, Illinois J. Math. 46 (2002), no. 4, 1177-1195.

13.
R. Sa Earp and E. Toubiana, Screw motion surfaces in $H^{2}{\times}R$ and $S^{2}{\times}R$, Illinois J. Math. 49 (2005), no. 4, 1323-1362.

14.
R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791-809.