JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CLASS-PRESERVING AUTOMORPHISMS OF GENERALIZED FREE PRODUCTS AMALGAMATING A CYCLIC NORMAL SUBGROUP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CLASS-PRESERVING AUTOMORPHISMS OF GENERALIZED FREE PRODUCTS AMALGAMATING A CYCLIC NORMAL SUBGROUP
Zhou, Wei; Kim, Goan-Su;
  PDF(new window)
 Abstract
In general, a class-preserving automorphism of generalized free products of nilpotent groups, amalgamating a cyclic normal subgroup of order 8, need not be an inner automorphism. We prove that every class-preserving automorphism of generalized free products of nitely generated nilpotent groups, amalgamating a cyclic normal subgroup of order less than 8, is inner.
 Keywords
class-preserving automorphisms;generalized free products;nilpotent groups;residually finite;
 Language
English
 Cited by
1.
CYCLIC SUBGROUP SEPARABILITY OF CERTAIN GRAPH PRODUCTS OF SUBGROUP SEPARABLE GROUPS,;;

대한수학회보, 2013. vol.50. 5, pp.1753-1763 crossref(new window)
2.
CLASS-PRESERVING AUTOMORPHISMS OF CERTAIN HNN EXTENSIONS OF BAUMSLAG-SOLITAR GROUPS,;;

대한수학회보, 2016. vol.53. 4, pp.1033-1041 crossref(new window)
1.
CYCLIC SUBGROUP SEPARABILITY OF CERTAIN GRAPH PRODUCTS OF SUBGROUP SEPARABLE GROUPS, Bulletin of the Korean Mathematical Society, 2013, 50, 5, 1753  crossref(new windwow)
2.
Class-preserving automorphisms of certain HNN extensions, Journal of Algebra, 2015, 431, 127  crossref(new windwow)
3.
CLASS-PRESERVING AUTOMORPHISMS OF CERTAIN HNN EXTENSIONS OF BAUMSLAG-SOLITAR GROUPS, Bulletin of the Korean Mathematical Society, 2016, 53, 4, 1033  crossref(new windwow)
 References
1.
R. B. J. T. Allenby, G. Kim, and C. Y. Tang, Residual finiteness of outer automorphism groups of certain pinched 1-relator groups, J. Algebra 246 (2001), no. 2, 849-858. crossref(new window)

2.
R. B. J. T. Allenby, G. Kim, and C. Y. Tang, Residual finiteness of outer automorphism groups of finitely generated nontriangle Fuchsian groups, Internat. J. Algebra Comput. 15 (2005), no. 1, 59-72. crossref(new window)

3.
W. Burnside, On the outer automorphisms of a group, Proc. London Math. Soc. 11 (1913), 40-42. crossref(new window)

4.
J. L. Dyer, Separating conjugates in amalgamated free products and HNN extensions, J. Austral. Math. Soc. Ser. A 29 (1980), no. 1, 35-51. crossref(new window)

5.
G. Endimioni, Pointwise inner automorphisms in a free nilpotent group, Q. J. Math. 53 (2002), no. 4, 397-402. crossref(new window)

6.
E. K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974), 160-164. crossref(new window)

7.
S. Jackowski and Z. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Algebra 44 (1987), no. 1-3, 241-250. crossref(new window)

8.
W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Pure and Applied Math. Vol. XIII, Wiley-Interscience, New York-London-Sydney, 1966.

9.
M. V. Neshadim, Free products of groups that do not have outer normal automorphisms, Algebra and Logic 35 (1996), no. 5, 316-318. crossref(new window)

10.
D. Segal, On the outer automorphism group of a polycyclic group, In Proc. of the Second International Group Theory Conference (Bressanone, 1989), Rend. Circ. Mat. Palermo (2) Suppl. No. 23 (1990), 265-278.

11.
G. E. Wall, Finite groups with class-preserving outer automorphisms, J. London Math. Soc. 22 (1947), 315-320. crossref(new window)

12.
P. C. Wong and K. B. Wong, Residual finiteness of outer automorphism groups of certain tree products, J. Group Theory 10 (2007), no. 3, 389-400.

13.
W. Zhou and G. Kim, Class-preserving automorphisms and inner automorphisms of certain tree products of groups, J. Algebra 341 (2011), 198-208. crossref(new window)