JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS
Yang, Ming-Ge; Huang, Nan-Jing;
  PDF(new window)
 Abstract
In this paper, a coincidence theorem for a compact -map is proved in an abstract convex space. Several more general coincidence theorems for noncompact -maps are derived in abstract convex spaces. Some examples are given to illustrate our coincidence theorems. As applications, an alternative theorem concerning the existence of maximal elements, an alternative theorem concerning equilibrium problems and a minimax inequality for three functions are proved in abstract convex spaces.
 Keywords
coincidence theorem;alternative theorem;minimax inequality;abstract convex space;-map;
 Language
English
 Cited by
1.
Existence results for generalized vector equilibrium problems with applications, Applied Mathematics and Mechanics, 2014, 35, 7, 913  crossref(new windwow)
2.
Applications of the KKM Property to Coincidence Theorems, Equilibrium Problems, Minimax Inequalities and Variational Relation Problems, Numerical Functional Analysis and Optimization, 2017, 38, 4, 523  crossref(new windwow)
3.
Existence of solutions for generalized vector quasi-equilibrium problems in abstract convex spaces with applications, Fixed Point Theory and Applications, 2015, 2015, 1  crossref(new windwow)
 References
1.
M. Balaj, Coincidence and maximal element theorems and their applications to generalized equilibrium problems and minimax inequalities, Nonlinear Anal. 68 (2008), no. 12, 3962-3971. crossref(new window)

2.
M. Balaj, Applications of two matching theorems in generalized convex spaces, Nonlinear Anal. Forum 7 (2002), no. 1, 123-130.

3.
M. Balaj and L. J. Lin, Fixed points, coincidence points and maximal elements with applications to generalized equilibrium problems and minimax theory, Nonlinear Anal. 70 (2009), no. 1, 393-403. crossref(new window)

4.
F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. crossref(new window)

5.
T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203 (1996), no. 1, 224-235. crossref(new window)

6.
X. P. Ding, Coincidence theorems and equilibria of generalized games, Indian J. Pure Appl. Math. 27 (1996), no. 11, 1057-1071.

7.
K. Fan, Sur un theoreme minimax, C. R. Acad. Sci. Paris 259 (1964), 3925-3928.

8.
C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), no. 2, 341-357. crossref(new window)

9.
C. D. Horvath, Extension and selection theorems in topological spaces with a generalized convexity structure, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), no. 2, 253-269. crossref(new window)

10.
H. Kim and S. Park, Remarks on the KKM property for open-valued multimaps on generalized convex spaces, J. Korean Math. Soc. 42 (2005), no. 1, 101-110. crossref(new window)

11.
B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe, Fund. Math. 14 (1929), 132-137.

12.
M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151-201. crossref(new window)

13.
L. J. Lin, Applications of a fixed point theorem in G-convex spaces, Nonlinear Anal. 46 (2001),no. 5, Ser. A: Theory Methods, 601-608. crossref(new window)

14.
L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117 (2003), no. 1, 121-137. crossref(new window)

15.
F. C. Liu, A note on the von Neumann-Sion minimax principle, Bull. Inst. Math. Acad. Sinica 6 (1978), no. 2, 517-524.

16.
S. Park, On generalizations of the KKM principle on abstract convex spaces, Nonlinear Anal. Forum 11 (2006), no. 1, 67-77.

17.
S. Park, Comments on recent studies on abstract convex spaces, Nonlinear Anal. Forum 13 (2008), no. 1, 1-17.

18.
S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc. 45 (2008), no. 1, 1-27. crossref(new window)

19.
S. Park, Equilibrium existence theorems in KKM spaces, Nonlinear Anal. 69 (2008), no. 12, 4352-4364. crossref(new window)

20.
S. Park, Remarks on fixed points, maximal elements, and equilibria of economies in abstract convex spaces, Taiwanese J. Math. 12 (2008), no. 6, 1365-1383.

21.
S. Park, Ninety years of the Brouwer fixed point theorem, Vietnam J. Math. 27 (1999), no. 3, 193-232.

22.
S. Park, Elements of the KKM theory for generalized convex spaces, Korean J. Comput. Appl. Math. 7 (2000), no. 1, 1-28.

23.
S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), no. 6, Ser. A: Theory Methods, 869-879. crossref(new window)

24.
S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci., Seoul Nat. Univ. 18 (1993), 1-21.

25.
G. Q. Tian, Generalizations of the FKKM theorem and the Ky Fan minimax inequal- ity, with applications to maximal elements, price equilibrium, and complementarity, J. Math. Anal. Appl. 170 (1992), no. 2, 457-471. crossref(new window)

26.
Z. T. Yu and L. J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal. 52 (2003), no. 2, 445-455. crossref(new window)