JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH SPECIAL CONFORMALITIES
Jin, Dae Ho;
  PDF(new window)
 Abstract
In this paper, we study the geometry of Einstein half lightlike submanifolds M of a semi-Riemannian space form subject to the conditions: (a) M is screen conformal, and (b) the coscreen distribution of M is a conformal Killing one. The main result is a classification theorem for screen conformal Einstein half lightlike submanifolds of a Lorentzian space form with a conformal Killing coscreen distribution.
 Keywords
half lightlike submanifold;screen conformal;conformal Killing distribution;
 Language
English
 Cited by
1.
LOCALLY SYMMETRIC HALF LIGHTLIKE SUBMANIFOLDS IN AN INDEFINITE KENMOTSU MANIFOLD,;

대한수학회논문집, 2012. vol.27. 3, pp.583-589 crossref(new window)
2.
THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE,;

한국수학교육학회지시리즈B:순수및응용수학, 2012. vol.19. 4, pp.327-335 crossref(new window)
3.
A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION,;;

대한수학회보, 2013. vol.50. 3, pp.705-717 crossref(new window)
1.
A CLASSIFICATION OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION, Bulletin of the Korean Mathematical Society, 2013, 50, 3, 705  crossref(new windwow)
 References
1.
C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.

2.
J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Marcel Dekker, Inc. New York, Second Edition, 1996.

3.
B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.

4.
K. L. Duggal and A. Bejancu, Lightlike submanifolds of codimension two, Math. J. Toyama Univ. 15 (1992), 59-82.

5.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

6.
K. L. Duggal and D. H. Jin, Half-lightlike submanifolds of codimension two, Math. J. Toyama Univ. 22 (1999), 121-161.

7.
A. Fialkow, Hypersurfaces of a space of constant curvature, Ann. of Math. (2) 39 (1938), no. 4, 762-785. crossref(new window)

8.
S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math. J. 31 (1982), no. 3, 289-308. crossref(new window)

9.
D. H. Jin, Einstein half lightlike submanifolds with a Killing co-screen distribution, Honam Math. J. 30 (2008), no. 3, 487-504. crossref(new window)

10.
D. H. Jin, A characterization of screen conformal half lightlike submanifolds, Honam Math. J. 31 (2009), no. 1, 17-23. crossref(new window)

11.
D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and Its Applications, Kluwer Acad. Publishers, Dordrecht, 1996.

12.
B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.

13.
G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comment. Math. Helv. 26 (1952), 328-344. crossref(new window)

14.
T. Y. Thomas, On closed spaces of constant mean curvature, Amer. J. Math. 58 (1936), no. 4, 702-704. crossref(new window)

15.
K. Yano, Differential Geometry on Complex and Almost Complex Spaces, The Macmillan Company, 1965.