JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DOUBLY NONLINEAR PARABOLIC EQUATIONS INVOLVING p-LAPLACIAN OPERATORS VIA TIME-DISCRETIZATION METHOD
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DOUBLY NONLINEAR PARABOLIC EQUATIONS INVOLVING p-LAPLACIAN OPERATORS VIA TIME-DISCRETIZATION METHOD
Shin, Kiyeon; Kang, Sujin;
  PDF(new window)
 Abstract
In this paper, we consider a doubly nonlinear parabolic partial differential equation $\frac{{\partial}{\beta}(u)}{{\partial}t}-{\Delta}_pu+f(x,t,u)
 Keywords
doubly nonlinear;p-Laplacian;Rothe method;
 Language
English
 Cited by
 References
1.
R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

2.
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noord-hoff Internat. Publ., Leyden, 1976.

3.
A. Bensoussan, L. Boccardo, and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. H. Poincare Anal. Non Lineaire 5 (1988), no. 4, 347-364.

4.
J. I. Diaz and J. F. Padial, Uniqueness and existence of solutions in the BVt(Q) space to a doubly nonlinear parabolic problem, Differential Integral Equations 40 (1996), no. 2, 527-560.

5.
A. Eden, B. Michaux, and J. M. Rakotoson, Semi-discretized nonlinear evolution equa- tions as discrete dynamical systems and error analysis, Indiana Univ. Math. J. 39 (1990), no. 3, 737-783. crossref(new window)

6.
A. Eden, B. Michaux, and J. M. Rakotoson, Doubly nonlinear parabolic type equations as dynamical systems, J. Dynam. Differential Equations 3 (1991), no. 1, 87-131. crossref(new window)

7.
M. Efendiev and A. Miranville, New models of Cahn-Hilliard-Gurtin equations, Contin. Mech. Thermodyn. 16 (2004), no. 5, 441-451. crossref(new window)

8.
A. El Hachimi and H. El Ouardi, Existence and regularity of a global attractor for doubly nonlinear parabolic equations, Electron. J. Differential Equations 2002 (2002), no. 45, 1-15.

9.
M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D. 92 (1996), no. 3-4, 178-192. crossref(new window)

10.
A. G. Kartasatos and M. E. Parrott, The weak solution of a functional-differential equation in a general Banach space, J. Differential Equations 75 (1988), no. 2, 290-302. crossref(new window)

11.
V. Le and K. Schmit, Global Bifurcation in Variational Inequalities, Springer-Verlag, New York, 1997.

12.
N. Merazga and A. Bouziani, On a time-discretization method for a semilinear heat equation with purely integral conditions in a nonclassical function space, Nonlinear Analysis 66 (2007), no. 3, 604-623. crossref(new window)

13.
A. Miranville and G. Schimperna, Global solution to a phase transition model based on a microforce balance, J. Evol. Equ. 5 (2005), no. 2, 253-276. crossref(new window)

14.
F. Otto, $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996), no. 1, 20-38. crossref(new window)

15.
A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl. 339 (2008), no. 1, 281-294. crossref(new window)

16.
J. M. Rakotoson, On some degenerate and nondegenerate quasilinear elliptic systems with nonhomogeneous Dirichlet boundary condition, Nonlinear Analysis 13 (1989), no. 2, 165-183. crossref(new window)

17.
M. Schatzman, Stationary solutions and asymptotic behavior of a quasilinear degenerate parabolic equation, Indiana Univ. Math. J. 33 (1984), no. 1, 1-29. crossref(new window)

18.
R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs 49, AMS, 1997.