JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON UNIVERSAL COVERINGS OF LIE TORI
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON UNIVERSAL COVERINGS OF LIE TORI
Khalili, Valiollah;
  PDF(new window)
 Abstract
In this paper we give an introduction to the theory of universal central extensions of perfect Lie algebras. In particular, we will provide a model for the universal coverings of Lie tori and we show that automorphisms and derivations lift to the universal coverings. We also prove that the universal covering of a Lie -torus of type is again a Lie -torus of type .
 Keywords
root graded Lie algebras;extended affine Lie algebras and Lie tori;
 Language
English
 Cited by
 References
1.
B. Allison, S. Azam, S. Berman, Y. Gao, and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126 (1997), no. 603, 1-122.

2.
B. Allison, G. Benkart, and Y. Gao, Central extensions of Lie algebras graded by finite root systems, Math. Ann. 316 (2000), no. 3, 499-527. crossref(new window)

3.
B. Allison, G. Benkart, and Y. Gao, Lie algebras graded by the root systems $BC_r$, r ${\geq}$ 2, Mem. Amer. Math. Soc. 158 (2002), no. 751, x+158.

4.
S. Azam, Generalized reductive Lie algebars: coonections with extended affine Lie alge-bars and Lie tori, Canad. J. Math. 58 (2006), no. 2, 225-248. crossref(new window)

5.
S. Azam and V. Khalili, Lie tori and their fixed point subalgebra, Algebra Colloq. 16 (2009), no. 3, 381-396. crossref(new window)

6.
S. Azam, V. Khalili, and M. Yousofzadeh, Extended affine root system of type BC, J. Lie Theory 15 (2005), no. 1, 145-181.

7.
S. Azam, H. Yamane, and M. Yousofzadeh, A finite presentation of universal coverings of Lie tori, Publ. RIMS Kyoto Univ. 46 (2010), 507-548.

8.
G. Benkart and O. Smirnov, Lie algebras graded by the root system $BC_1$, J. Lie Theory 13 (2003), no. 1, 91-132.

9.
S. Berman and R. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math. 108 (1992), no. 2, 323-347. crossref(new window)

10.
N. Bourbaki, Groupes et algebres de Lie, Chap. 4-6, Hermann, Paris 1968.

11.
Y. Gao, Steinberg unitary Lie algebras and skew-dihedral homology, J. Algebra. 176 (1996), no. 1, 261-304.

12.
H. Garland, The arithmetic theory of loop groups, Inst. Hautes Etudes Sci. Publ. Math. (1980), no. 52, 5-136.

13.
V. Khalili, Extension data and their Lie algebras, Algebra Colloq. 18 (2011), no. 3, 461-474. crossref(new window)

14.
V. Khalili, The core of a locally extended affine Lie algebras, Comm. Algebra 39 (2011), no. 10, 3646-3661. crossref(new window)

15.
R. V. Moody and A. Pianzola, Lie Algebras with Triangular Decomposition, John Wiley, New York, 1995.

16.
J. Morita and Y. Yoshii, Locally extended affine Lie algebras, J. Algebra 301, (2006), no. 1, 59-81. crossref(new window)

17.
K. H. Neeb, Universal central extensions of Lie groups, Acta Appl. Math. 73 (2002). no. 1-2, 175-219. crossref(new window)

18.
E. Neher, Lie algebras graded by 3-graded root systems and Jordan pairs covered by grids, Amer. J. Math. 118 (1996), no. 2, 439-491. crossref(new window)

19.
E. Neher, Lie tori, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 3, 84-89.

20.
E. Neher, Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 3, 90-96.

21.
E. Neher, An introduction to universal central extensions of Lie superalgebras, Groups, rings, Lie and Hopf algebras (St. John's, NF, 2001), 141-166, Math. Appl., 555, Kluwer Acad. Publ., Dordrecht, 2003.

22.
A. Pianzola, D. Prelet, and J. Sun, Descent constructions for central extensions of infinite dimensional Lie algebras, Manuscripta Math. 122 (2007), no. 2, 137-148. crossref(new window)

23.
W. L. J. van der Kallen, Infinitesimacally Centrals Extension of Chevally Groups, Springer-Verlag, Berlin, 1973, Lecture Notes in Mathematics, Vol. 356, 1973.

24.
C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.

25.
Y. Yoshii, Root-graded Lie algebras with compatible grading, Comm. Algebra 20 (2001), no. 8, 3365-3391.

26.
Y. Yoshii, Root systems extended by an abelian group, and their Lie algebras, J. Lie theory, 14 (2004), no. 2, 371-394.

27.
Y. Yoshii, Lie tori-a simple characterization of extended affine Lie algebras, Publ. Res. Inst. Math. Sci. 42 (2006), no. 3, 739-762. crossref(new window)

28.
M. Yousofzadeh, A presentation of Lie tori of type $B_l$, Publ. Res. Inst. Math. Sci. 44 (2008), no. 1, 1-44.