JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON QUASI-PERIODIC PERTURBATIONS OF ELLIPTIC EQUILIBRIUM POINTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON QUASI-PERIODIC PERTURBATIONS OF ELLIPTIC EQUILIBRIUM POINTS
Zhao, Houyu;
  PDF(new window)
 Abstract
The system where A is elliptic whose eigenvalues are not necessarily simple and is . It is proved that, under suitable hypothesis of analyticity, for most values of the frequencies, the system is reducible.
 Keywords
quasi-periodic perturbations;elliptic points;quasi-periodic solutions;nonresonant condition;small divisors;quasi-periodic Floquet theorem;KAM theory;
 Language
English
 Cited by
 References
1.
N. N. Bogoljubov, Ju. A. Mitropoliski, and A. M. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer-Verlag, New York, 1976.

2.
W. A. Coppel, Pseudo-autonomous linear system, Bull. Austral. Math. Soc. 16 (1977), no. 1, 61-65. crossref(new window)

3.
E. I. Dinaburg and Y. G. Sinai, The one dimensional Schrodinger equation with a quasiperiodic potential, Funkcional. Anal. i Prilozen. 9 (1975), no. 1, 8-21. crossref(new window)

4.
L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrodinger equation, Comm. Math. Phys. 146 (1992), no. 3, 447-482. crossref(new window)

5.
H. Her and J. You, Full measure reducibility for generic one-parameter family of quasiperiodic linear systems, J. Dynam. Differential Equations 20 (2008), no. 4, 831-886. crossref(new window)

6.
R. A. Johnson and G. R. Sell, Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems, J. Differential Equations 41 (1981), no. 2, 262-288. crossref(new window)

7.
A. Jorba, R. Ramrez-ros, and J. Villanueva, Effective reducibility of quasi-periodic linear equations close to constant coefficients, SIAM J. Math. Anal. 28 (1997), no. 1, 178-188. crossref(new window)

8.
A. Jorba and C. Simo, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations 98 (1992), no. 1, 111-124. crossref(new window)

9.
A. Jorba and C. Simo, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal. 27 (1996), no. 6, 1704-1737. crossref(new window)

10.
P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.

11.
J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann. 169 (1967), 136-176. crossref(new window)

12.
J. Moser and J. Poschel, On the stationary Schrodinger equation with a quasiperiodic potential, Phys. A 124 (1984), no. 1-3, 535-542. crossref(new window)

13.
H. Russmann, On the one dimensional Schrodinger equation with a quasiperiodic potential, Nonlinear dynamics (Internat. Conf., New York, 1979), pp. 90-107, Ann. New York Acad. Sci., 357, New York Acad. Sci., New York, 1980.

14.
J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coeffficients which are degenerate, Proc. Amer. Math. Soc. 126 (1998), no. 5, 1445-1451.

15.
J. You, Perturbations of lower-dimensional tori for Hamiltonian systems, J. Differential Equations 152 (1999), no. 1, 1-29. crossref(new window)

16.
X. P. Yuan and A. Nunes, A note on the reducibility of linear differential equations with quasi-periodic coefficients, Int. J. Math. Math. Sci. 2003 (2003), no. 64, 4071-4083. crossref(new window)