JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NEW ALTERNATIVE ELLIPTIC PDE IN EIT IMAGING
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NEW ALTERNATIVE ELLIPTIC PDE IN EIT IMAGING
Kim, Sungwhan;
  PDF(new window)
 Abstract
In this paper, we introduce a new elliptic PDE: where is the admittivity distribution of the conducting material and it is shown that the introduced elliptic PDE can replace the standard elliptic PDE with conductivity coefficient in EIT imaging. Indeed, letting be the solution to the standard elliptic PDE with conductivity coefficient, the solution is quite close to the solution and can show spectroscopic properties of the conducting object unlike . In particular, the potential can be used in detecting a thin low-conducting anomaly located in since the spectroscopic change of the Neumann data of is inversely proportional to thickness of the thin anomaly.
 Keywords
electrical impedance tomography;alternative elliptic PDE;spectroscopic change;anomaly thickness;
 Language
English
 Cited by
 References
1.
H. Ammari, E. Beretta, and E. Francini, Reconstruction of thin conductivity imperfections, Appl. Anal. 83 (2004), no. 1, 63-76. crossref(new window)

2.
H. Ammari, O. Kwon, J. K. Seo, and E. J. Woo, T-Scan electrical impedance imaging system for anomaly detection, SIAM J. Appl. Math. 65 (2004), no. 1, 252-266. crossref(new window)

3.
H. Ammari and J. K. Seo, An accurate formula for the reconstruction of conductivity Inhomogeneity, Adv. in Appl. Math. 30 (2003), no. 4, 679-705. crossref(new window)

4.
E. Beretta, E. Francini, and M. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl. (9) 82 (2003), no. 10, 1277-1301. crossref(new window)

5.
M. Bruhl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems 16 (2000), no. 4, 1029-1042. crossref(new window)

6.
M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev. 41 (1999), no. 1, 85-101. crossref(new window)

7.
S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues II. measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol. 41 (1996), 2251-2269. crossref(new window)

8.
H. Griffiths, H. T. L. Leung, and R. J. Williams, Imaging the complex impedance of the thorax, Clin. Phys. Physiol. Meas. 13 A (1992), 77-81.

9.
S. Grimnes and O. G. Martinsen, Bioimpedance and Bioelectricity Basics, Oxford, UK: Elsevier, 2008.

10.
J. Gu and L. Y. Yu, Influence of geometric factors on crack depth measurement using the potential drop technique, NDT Int. 23 (1990), 161-164. crossref(new window)

11.
D. Holder, Electrical Impedance Tomography: Methods, History and Applications, Bristol, UK: IOP Publishing, 2005.

12.
H. Jain, D. Isaacson, P. M. Edic, and J. C. Newell, Electrical impedance tomography of complex conductivity distributions with noncircular boundary, IEEE Trans. Biomed. Eng. 44 (1997), 1051-1060. crossref(new window)

13.
S. Kim, M. K. Choi, E. J. Lee, J. K. Seo, and E. J. Woo, Spectroscopic admittivity imaging of membrane structure, to appear.

14.
S. Kim, J. Lee, J. K. Seo, E. J. Woo, and H. Zribi, Multifrequency trans-admittance scanner: mathematical framework and feasibility, SIAM J. Appl. Math. 69 (2008), no. 1, 22-36. crossref(new window)

15.
S. Kim, J. K. Seo, and T. Ha, A nondestructive evaluation method for concrete voids: frequency differential electrical impedance scanning, SIAM J. Appl. Math. 69 (2009), no. 6, 1759-1771. crossref(new window)

16.
H. Lee and W. K Park, Location search algorithm of thin conductivity inclusions via boundary measurements, Mathematical methods for imaging and inverse problems, 21729, ESAIM Proc., 26, EDP Sci., Les Ulis, 2009.

17.
T. I. Oh, J. Lee, J. K. Seo, S. W. Kim, and E. J. Woo, Feasibility of breast cancer lesion detection using multi-frequency trans-admittance scanner (TAS) with 10Hz to 500kHz bandwidth, Physiol. Meas. 28 (2007), 71-84. crossref(new window)

18.
W. K. Park and D. Lesselier, Reconstruction of thin electromagnetic inclusions by a level-set method, Inverse Problems 25 (2009), no. 8, 1-24.

19.
J. K. Seo, O. Kwon, H. Ammari, and E. J. Woo, Mathematical framework and anomaly estimation algorithm for breast cancer detection: electrical impedance technique using TS2000 configuration, IEEE Trans. Biomed. Eng. 51 (2004), no. 11, 1898-1906. crossref(new window)

20.
E. Somersalo, M. Cheney, and D. Isaacson, Existence and uniqueness for electrode mod- els for electric current computed tomography, SIAM J. Appl. Math. 52 (1992), no. 4, 1023-1040. crossref(new window)