JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE MEAN VALUES OF L(1, χ)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE MEAN VALUES OF L(1, χ)
Wu, Zhaoxia; Zhang, Wenpeng;
  PDF(new window)
 Abstract
Let > 2 be a prime, and let be an integer. Let be a Dirichlet character modulo , and let be the Dirichlet L-function corresponding to . In this paper we consider the mean values of .
 Keywords
L-function;Dirichlet character;identity;
 Language
English
 Cited by
1.
TWISTED QUADRATIC MOMENTS FOR DIRICHLET L-FUNCTIONS,;

대한수학회보, 2015. vol.52. 6, pp.2095-2105 crossref(new window)
1.
On the mean values of Dirichlet L-functions, Journal of Number Theory, 2015, 147, 172  crossref(new windwow)
2.
TWISTED QUADRATIC MOMENTS FOR DIRICHLET L-FUNCTIONS, Bulletin of the Korean Mathematical Society, 2015, 52, 6, 2095  crossref(new windwow)
 References
1.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.

2.
T. Funakura, On Kronecker's limit formula or Dirichlet series with periodic coefficients, Acta Arith. 55 (1990), no. 1, 59-73.

3.
M. Katsurada and K. Matsumoto, The mean value of Dirichlet L-functions at integer points and class numbers of cyclotomic fields, Nagoya Math. J. 134 (1994), 151-172.

4.
H. Liu and W. Zhang, On the mean value of L(m,${\chi}$)L(n,${\bar{\chi}}$) at positive integers m, n ${\geq}$ 1, Acta Arith. 122 (2006), no. 1, 51-56. crossref(new window)

5.
S. Louboutin, Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, Canad. Math. Bull. 36 (1993), no. 2, 190-196. crossref(new window)

6.
S. Louboutin, On the mean value of ${\left|L(1,{\chi})\right|}^2$ for odd primitive Dirichlet characters, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 7, 143-145.

7.
S. Louboutin, The mean value of ${\left|L(\kappa,{\chi})\right|}^2$ at positive rational integers ${\geq}$ ${\geq}$ 1, Colloq. Math. 90 (2001), no. 1, 69-76. crossref(new window)

8.
H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), no. 1, 1-3.