JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO PERTURBED SCHRÖDINGER SYSTEM WITH MAGNETIC FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MULTIPLICITY OF NONTRIVIAL SOLUTIONS TO PERTURBED SCHRÖDINGER SYSTEM WITH MAGNETIC FIELDS
Zhang, Huixing; Liu, Wenbin;
  PDF(new window)
 Abstract
We are concerned with the multiplicity of semiclassical solutions of the following Schrdinger system involving critical nonlinearity and magnetic fields $$\{-({\varepsilon}{\nabla}+iA(x))^2u+V(x)u
 Keywords
perturbed Schrdinger system;critical nonlinearity;variational methods;magnetic fields;
 Language
English
 Cited by
 References
1.
A. Ambrosetti, M. Badiale, and S. Cingolani, Semiclassical states of nonlinear Schrodinger equations, Arch. Ration. Mech. Anal. 140 (1997), no. 3, 285-300. crossref(new window)

2.
A. Ambrosetti, A. Malchiodi, and S. Secchi, Multiplicity results for some nonlinear Schrodinger equations with potentials, Arch. Ration. Mech. Anal. 159 (2001), no. 3, 253-271. crossref(new window)

3.
G. Arioli and A. Szulkin, A semilinear Schrodinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal. 170 (2003), no. 4, 277-295. crossref(new window)

4.
T. Bartsch, E. N. Dancer, and S. Peng, On mult-bump semi-classical bound states of nonlinear Schrodinger equations with electromagnetic fields, Adv. Differential Equations 11 (2006), no. 7, 781-812.

5.
V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), no. 2 533-572.

6.
D. Cao and Z. Tang, Existence and uniqueness of multi-bump bound states of nonlinear Schrodinger equations with electromagnetic fields, J. Differential Equations 222 (2006), no. 2, 381-424. crossref(new window)

7.
S. Cingolani, Semiclassical stationary states of nonlinear Schrodinger equation with an external magnetic field, J. Differential Equations 188 (2003), no. 1, 52-79. crossref(new window)

8.
S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrodinger equation with competing potential functions, J. Differential Equations 160 (2000), no. 1, 118-138. crossref(new window)

9.
S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrodinger equation, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1249-1260. crossref(new window)

10.
S. Cingolani and S. Secchi, Semiclassical states for NLS equations with magnetic potentials having polynomial growths, J. Math. Phys. 46 (2005), no. 5, 053503, 19 pp. crossref(new window)

11.
M. Clapp and Y. H. Ding, Minimal nodal solutions of a Schrodinger equation with critical nonlinearity and symmetric potential, Differential Integral Equations 16 (2003), no. 8, 981-992.

12.
Y. H. Ding and F. H. Lin, Solutions of perturbed Schrodinger equations with critical nonlinearity, Calc. Var. Partial Differential Equations 30 (2007), no. 2, 231-249. crossref(new window)

13.
M. Esteban and P. L. Lions, Stationary solutions of nonlinear Schrodinger equation with an external magnetic field, in PDE and Calculus of Variations, in honor of E. De Giorgi, Brikhauser, 1990, 369-408.

14.
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397-408. crossref(new window)

15.
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrodinger equations under multiple well potential, Comm. Math. Phys. 131 (1990), no. 2, 223-253. crossref(new window)

16.
M. del Pino and P. Felmer, Semi-classical states for nonlinear Schrodinger equations, J. Funct. Anal. 149 (1997), no. 1, 245-265. crossref(new window)

17.
M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrodinger equations, Ann. Inst. H. Poincare Anal. Non Lineaire 15 (1998), no. 2, 127-149. crossref(new window)

18.
Z. Tang, On the least energy solutions of nonlinear Schrodinger equations with electromagnetic fields, Comput. Math. Appl. 54 (2007), no. 5, 627-637. crossref(new window)

19.
Z. Tang, Multi-bump bound states of nonlinear Schrodinger equations with electromagnetic fields and critical frequency, J. Differential Equations 245 (2008), no. 10, 2723- 2748. crossref(new window)

20.
F. Wang, On an electromagnetic Schrodinger equation with critical growth, Nonlinear Anal. 69 (2008), no. 11, 4088-4098. crossref(new window)

21.
X. Wang, On concentration of positive bound states of nonlinear Schrodinger equations, Comm. Math. Phys. 153 (1993), no. 2, 229-244. crossref(new window)

22.
M. Willem, Minimax Theorems, Birkhauser, Boston, MA, 1996.