JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN IDENTITY ON THE 2m-TH POWER MEAN VALUE OF THE GENERALIZED GAUSS SUMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN IDENTITY ON THE 2m-TH POWER MEAN VALUE OF THE GENERALIZED GAUSS SUMS
Liu, Feng; Yang, Quan-Hui;
  PDF(new window)
 Abstract
In this paper, using analytic method and the properties of the Legendre`s symbol, we prove an exact calculating formula on the -th power mean value of the generalized quadratic Gauss sums for . This solves a conjecture of He and Zhang [On the 2k-th power mean value of the generalized quadratic Gauss sums, Bull. Korean Math. Soc. 48 (2011), no. 1, 9-15].
 Keywords
2m-th power mean;exact calculating formula;generalized quadratic Gauss sums;
 Language
English
 Cited by
 References
1.
Tom M. Apostol, Introduction to Analytic Number Theory, Spring-Verlag, New York, 1976.

2.
T. Cochrane and Z. Y. Zheng, Pure and mixed exponential sums, Acta Arith 91 (1999), no. 3, 249-278.

3.
Y. He and W. P. Zhang, On the 2k-th power mean value of the generalized quadratic Gauss sums, Bull. Korean Math. Soc. 48 (2011), no. 1, 9-15. crossref(new window)

4.
A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207. crossref(new window)

5.
W. P. Zhang, Moments of generalized quadratic Gauss sums weighted by L-functions, J. Number Theory 92 (2002), no. 2, 304-314. crossref(new window)

6.
W. P. Zhang and H. Liu, On the general Gauss sums and their fourth power mean, Osaka J. Math. 42 (2005), no. 1, 189-199.