JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE
Cao, Shunjuan;
  PDF(new window)
 Abstract
In the present paper, we discuss the rigidity phenomenon of closed minimal submanifolds in a locally symmetric Riemannian manifold with pinched sectional curvature. We show that if the sectional curvature of the submanifold is no less than an explicitly given constant, then either the submanifold is totally geodesic, or the ambient space is a sphere and the submanifold is isometric to a product of two spheres or the Veronese surface in .
 Keywords
minimal submanifold;rigidity;sectional curvature;locally symmetric space;
 Language
English
 Cited by
 References
1.
S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, In: Functional analysis and relathed fields, pp. 59-75. Berlin, Heidelberg, New York, Springer, 1970.

2.
Q. Ding and Y. L. Xin, On Chern's problem for rigidity of minimal hypersurfaces in the spheres, Adv. Math. 227 (2011), no. 1, 131-145. crossref(new window)

3.
J. Q. Ge and Z. Z. Tang, A proof of the DDVV conjecture and its equality case, Pacific J. Math. 237 (2008), no. 1, 87-95. crossref(new window)

4.
S. I. Goldberg, Curvature and Homology, Academic Press, London, 1998.

5.
J. R. Gu and H. W. Xu, On Yau rigidity theorem for minimal submanifolds in spheres, preprint, arxiv:1102.5732v1.

6.
T. Itoh, On Veronese manifolds, J. Math. Soc. Japan 27 (1975), no. 3, 497-506. crossref(new window)

7.
T. Itoh, Addendum to my paper "On Veronese manifolds", J. Math. Soc. Japan 30 (1978), no. 1, 73-74. crossref(new window)

8.
B. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 179-185.

9.
A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. (Basel) 58 (1992), no. 6, 582-594. crossref(new window)

10.
Z. Lu, Proof of the normal scalar curvature conjecture, arXiv:0711.3510v1.

11.
J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105. crossref(new window)

12.
W. D. Song, On minimal submanifolds in a locally symmetric space, Chinese Ann. Math. Ser. A 19 (1998), 693-698.

13.
S. M. Wei and H. W. Xu, Scalar curvature of minimal hypersurfaces in a sphere, Math. Res. Lett. 14 (2007), no. 3, 423-432. crossref(new window)

14.
H. W. Xu, On closed minimal submanifolds in pinched Riemannian manifolds, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1743-1751. crossref(new window)

15.
H. C. Yang and Q. M. Cheng, Chern's conjecture on minimal hypersurfaces, Math. Z. 227 (1998), no. 3, 377-390. crossref(new window)

16.
S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math. 96, (1974), 346-366 crossref(new window)

17.
S. T. Yau, Submanifolds with constant mean curvature II, Amer. J. Math. 97 (1975), 76-100. crossref(new window)